Suppr超能文献

一种基于精确投影寻踪的多变量两样本非参数检验算法,适用于回顾性研究和序贯分组研究。

An exact projection pursuit-based algorithm for multivariate two-sample nonparametric testing applicable to retrospective and group sequential studies.

作者信息

Zou Li, Gurevich Gregory, Vexler Ablert

机构信息

Department of Statistics and Biostatistics, California State University, Hayward, CA, USA.

Department of Industrial Engineering and Management, SCE- Shamoon College of Engineering, Beer-Sheva, Israel.

出版信息

J Appl Stat. 2023 Nov 6;51(11):2214-2231. doi: 10.1080/02664763.2023.2277118. eCollection 2024.

Abstract

Nonparametric tests for equality of multivariate distributions are frequently desired in research. It is commonly required that test-procedures based on relatively small samples of vectors accurately control the corresponding Type I Error (TIE) rates. Often, in the multivariate testing, extensions of null-distribution-free univariate methods, e.g., Kolmogorov-Smirnov and Cramér-von Mises type schemes, are not exact, since their null distributions depend on underlying data distributions. The present paper extends the density-based empirical likelihood technique in order to nonparametrically approximate the most powerful test for the multivariate two-sample (MTS) problem, yielding an exact finite-sample test statistic. We rigorously apply one-to-one-mapping between the equality of vectors' distributions and the equality of distributions of relevant univariate linear projections. We establish a general algorithm that simplifies the use of projection pursuit, employing only a few of the infinitely many linear combinations of observed vectors' components. The displayed distribution-free strategy is employed in retrospective and group sequential manners. A novel MTS nonparametric procedure in the group sequential manner is proposed. The asymptotic consistency of the proposed technique is shown. Monte Carlo studies demonstrate that the proposed procedures exhibit extremely high and stable power characteristics across a variety of settings. Supplementary materials for this article are available online.

摘要

研究中经常需要对多元分布的相等性进行非参数检验。通常要求基于相对较小的向量样本的检验程序准确控制相应的第一类错误(TIE)率。在多元检验中,无分布的单变量方法(如柯尔莫哥洛夫 - 斯米尔诺夫和克拉默 - 冯·米塞斯类型的方案)的扩展往往不准确,因为它们的零分布依赖于基础数据分布。本文扩展了基于密度的经验似然技术,以便对多元两样本(MTS)问题的最强大检验进行非参数近似,从而产生一个精确的有限样本检验统计量。我们严格应用向量分布的相等性与相关单变量线性投影的分布的相等性之间的一一映射。我们建立了一种通用算法,该算法简化了投影寻踪的使用,仅采用观察向量分量的无限多个线性组合中的少数几个。所展示的无分布策略以回顾性和序贯分组的方式使用。提出了一种序贯分组方式的新型MTS非参数程序。证明了所提出技术的渐近一致性。蒙特卡罗研究表明,所提出的程序在各种设置下都表现出极高且稳定的功效特性。本文的补充材料可在线获取。

相似文献

7
An Exact Density-Based Empirical Likelihood Ratio Test for Paired Data.一种用于配对数据的基于精确密度的经验似然比检验。
J Stat Plan Inference. 2013 Feb 1;143(2):334-345. doi: 10.1016/j.jspi.2012.07.018. Epub 2012 Aug 6.
9
A High-Dimensional Nonparametric Multivariate Test for Mean Vector.均值向量的高维非参数多元检验
J Am Stat Assoc. 2015;110(512):1658-1669. doi: 10.1080/01621459.2014.988215. Epub 2016 Jan 15.
10
Nonparametric tests for right-censored data with biased sampling.针对有偏抽样的右删失数据的非参数检验。
J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630. doi: 10.1111/j.1467-9868.2010.00742.x.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验