Suppr超能文献

面部信息整合并不理想。

Integration of Facial Information is Sub-Optimal.

作者信息

Gold Jason M, Tjan Bosco S, Shotts Megan

机构信息

Departments of Psychological and Brain Sciences and Cognitive Science, Indiana University, 1101 East 10th Street Bloomington, IN 47405 USA.

Department of Psychology, University of Southern California, SGM 501 Los Angeles, CA 90089 USA.

出版信息

Cogsci. 2009;2009:2897-2901.

Abstract

How efficiently do we combine information across facial features when recognizing a face? Previous studies have suggested that the perception of a face is not simply the result of an independent analysis of individual facial features, but instead involves a coding of the relationships amongst features. This additional coding of the relationships amongst features is thought to enhance our ability to recognize a face. In our experiments, we tested whether an observer's ability to recognize a face is in fact better than what one would expect from their ability to recognize the individual facial features in isolation. We tested this by using a psychophysical summation-at-threshold technique that has been used extensively to measure how efficiently observers integrate information across spatial locations and spatial frequencies. Surprisingly, we found that observers integrated information across facial features less efficiently than would be predicted by their ability to recognize the individual parts.

摘要

在识别面孔时,我们整合面部特征信息的效率如何?先前的研究表明,对面孔的感知不仅仅是对各个面部特征进行独立分析的结果,而是涉及对面部特征之间关系的编码。面部特征之间这种额外的关系编码被认为可以增强我们识别面孔的能力。在我们的实验中,我们测试了观察者识别面孔的能力实际上是否比人们根据他们单独识别各个面部特征的能力所预期的要好。我们通过使用一种阈限心理物理总和技术来测试这一点,该技术已被广泛用于测量观察者跨空间位置和空间频率整合信息的效率。令人惊讶的是,我们发现观察者跨面部特征整合信息的效率低于根据他们识别各个部分的能力所预测的效率。

相似文献

2
The perception of a face is no more than the sum of its parts.
Psychol Sci. 2012 Apr;23(4):427-34. doi: 10.1177/0956797611427407. Epub 2012 Mar 5.
3
The perception of a familiar face is no more than the sum of its parts.
Psychon Bull Rev. 2014 Dec;21(6):1465-72. doi: 10.3758/s13423-014-0632-3.
4
Observer-generated maps of diagnostic facial features enable categorization and prediction of emotion expressions.
Acta Psychol (Amst). 2024 Nov;251:104569. doi: 10.1016/j.actpsy.2024.104569. Epub 2024 Nov 2.
5
Face processing in autism: Reduced integration of cross-feature dynamics.
Cortex. 2016 Feb;75:113-119. doi: 10.1016/j.cortex.2015.11.019. Epub 2015 Dec 17.
6
The surprisingly high human efficiency at learning to recognize faces.
Vision Res. 2009 Feb;49(3):301-14. doi: 10.1016/j.visres.2008.10.014. Epub 2008 Dec 16.
7
Mapping the emotional face. How individual face parts contribute to successful emotion recognition.
PLoS One. 2017 May 11;12(5):e0177239. doi: 10.1371/journal.pone.0177239. eCollection 2017.
8
Hometown size affects the processing of naturalistic face variability.
Vision Res. 2017 Dec;141:228-236. doi: 10.1016/j.visres.2016.12.005. Epub 2017 Jan 2.
9
The perception of a face can be greater than the sum of its parts.
Psychon Bull Rev. 2015 Jun;22(3):710-6. doi: 10.3758/s13423-014-0726-y.
10
Spatial frequency bandwidth used in the recognition of facial images.
Vision Res. 1999 Nov;39(23):3824-33. doi: 10.1016/s0042-6989(99)00096-6.

本文引用的文献

2
Classification images predict absolute efficiency.
J Vis. 2005 Feb 24;5(2):139-49. doi: 10.1167/5.2.5.
3
The remarkable inefficiency of word recognition.
Nature. 2003 Jun 12;423(6941):752-6. doi: 10.1038/nature01516.
4
Classification image weights and internal noise level estimation.
J Vis. 2002;2(1):121-31. doi: 10.1167/2.1.8.
6
The many faces of configural processing.
Trends Cogn Sci. 2002 Jun 1;6(6):255-260. doi: 10.1016/s1364-6613(02)01903-4.
8
Identification of band-pass filtered letters and faces by human and ideal observers.
Vision Res. 1999 Oct;39(21):3537-60. doi: 10.1016/s0042-6989(99)00080-2.
9
Signal but not noise changes with perceptual learning.
Nature. 1999 Nov 11;402(6758):176-8. doi: 10.1038/46027.
10
Human efficiency for recognizing 3-D objects in luminance noise.
Vision Res. 1995 Nov;35(21):3053-69. doi: 10.1016/0042-6989(95)00070-g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验