Barton Zachary J, Rodríguez-López Joaquín
Department of Chemistry, University of Illinois at Urbana-Champaign , 58 Roger Adams Laboratory, 600 South Matthews Avenue, Urbana, Illinois 61801, United States.
Anal Chem. 2014 Nov 4;86(21):10660-7. doi: 10.1021/ac502517b. Epub 2014 Oct 24.
We report on the quantitative, spatially resolved study of ionic processes for energy materials in nonaqueous environments by in situ electrochemical means at the micro- and nanoscale. Mercury-capped platinum ultramicroelectrodes (Hg/Pt UMEs) were tested as probes for alkali ions in propylene carbonate (PC) in an oxygen- and water-free environment. Anodic stripping voltammetry (ASV) performed at Hg/Pt UMEs displayed a linear response to Li(+) concentration extending from 20 μM to at least 5 mM. The sensitivities of these probes for ionic lithium are 1.93 and -23.2 pA μM(-1) by the steady-state amalgamation current and the peak stripping current, respectively. These values showed excellent agreement with simulated results as well as to those obtained experimentally for Cd(2+) in H2O. We further explored the interfacial imaging of lithium ion flux at an electrified interface. Scanning electrochemical microscopy (SECM) using Hg/Pt UMEs showed that the steady-state amalgamation of ionic lithium could be used to reliably position a probe close to a substrate. Investigations on a selectively insulated gold electrode in an organic solvent system showcased the response of Hg/Pt UMEs to lithium uptake by an electroactive material. Additionally, lithium stripping voltammetry at Hg deposits on a 120 nm carbon nanoelectrode demonstrated the possibility of implementing the introduced imaging strategy at the nanoscale. This work opens a way to directly correlate material defects and reactive heterogeneity in energy materials with unprecedented spatial and temporal resolution.
我们报告了通过微纳尺度的原位电化学方法,对非水环境中能量材料的离子过程进行的定量、空间分辨研究。测试了汞覆盖的铂超微电极(Hg/Pt UMEs)作为无水无氧环境下碳酸丙烯酯(PC)中碱金属离子的探针。在Hg/Pt UMEs上进行的阳极溶出伏安法(ASV)对Li(+)浓度在20 μM至至少5 mM范围内呈现线性响应。通过稳态汞齐化电流和溶出峰电流,这些探针对锂离子的灵敏度分别为1.93和-23.2 pA μM(-1)。这些值与模拟结果以及在水中对Cd(2+)实验获得的结果显示出极好的一致性。我们进一步探索了带电界面处锂离子通量的界面成像。使用Hg/Pt UMEs的扫描电化学显微镜(SECM)表明,离子锂的稳态汞齐化可用于将探针可靠地定位在靠近基底的位置。在有机溶剂体系中对选择性绝缘金电极的研究展示了Hg/Pt UMEs对电活性材料锂摄取的响应。此外,在120 nm碳纳米电极上汞沉积物上的锂溶出伏安法证明了在纳米尺度上实施引入的成像策略的可能性。这项工作开辟了一条途径,以前所未有的空间和时间分辨率直接关联能量材料中的材料缺陷和反应不均匀性。