Suppr超能文献

一种小分子恢复铁转运可促进动物体内铁的吸收和血红蛋白化。

Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals.

作者信息

Grillo Anthony S, SantaMaria Anna M, Kafina Martin D, Cioffi Alexander G, Huston Nicholas C, Han Murui, Seo Young Ah, Yien Yvette Y, Nardone Christopher, Menon Archita V, Fan James, Svoboda Dillon C, Anderson Jacob B, Hong John D, Nicolau Bruno G, Subedi Kiran, Gewirth Andrew A, Wessling-Resnick Marianne, Kim Jonghan, Paw Barry H, Burke Martin D

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Science. 2017 May 12;356(6338):608-616. doi: 10.1126/science.aah3862.

Abstract

Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.

摘要

多种人类疾病源于铁转运蛋白功能的遗传性或后天性缺陷,这种缺陷会减少不同位点和方向的跨膜铁通量。由于其他铁转运蛋白仍保持活性,不稳定的铁梯度会在相应的蛋白质缺陷膜上积累。在此,我们报告一种小分子天然产物,扁柏酚,可利用这种梯度来恢复铁进出细胞以及在细胞内的转运。该化合物同样能促进二价金属离子转运体1(DMT1)缺陷大鼠和铁转运蛋白缺陷小鼠的肠道铁吸收,以及DMT1和线粒体铁转运蛋白缺陷斑马鱼的血红蛋白化。这些发现阐明了小分子介导的铁转运位点和方向选择性恢复的一般机制框架。它们还表明,部分模拟缺失的铁及可能其他离子的蛋白质转运体功能的小分子,可能在治疗人类疾病方面具有潜力。

相似文献

1
Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals.
Science. 2017 May 12;356(6338):608-616. doi: 10.1126/science.aah3862.
2
A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2121400119. doi: 10.1073/pnas.2121400119. Epub 2022 Jun 22.
3
A direct comparison of divalent metal-ion transporter (DMT1) and hinokitiol, a potential small molecule replacement.
Biometals. 2019 Oct;32(5):745-755. doi: 10.1007/s10534-019-00207-2. Epub 2019 Jul 31.
5
Mechanisms and regulation of intestinal iron absorption.
Blood Cells Mol Dis. 2002 Nov-Dec;29(3):384-99. doi: 10.1006/bcmd.2002.0578.
6
DMT1 and FPN1 expression during infancy: developmental regulation of iron absorption.
Am J Physiol Gastrointest Liver Physiol. 2003 Dec;285(6):G1153-61. doi: 10.1152/ajpgi.00107.2003. Epub 2003 Sep 4.
9
Divalent metal transporter 1.
Hematology. 2005 Aug;10(4):339-45. doi: 10.1080/10245330500093419.
10
Minimizing higher-order aggregation maximizes iron mobilization by small molecules.
Nat Chem Biol. 2024 Oct;20(10):1282-1293. doi: 10.1038/s41589-024-01596-3. Epub 2024 Apr 25.

引用本文的文献

5
Radiolabeling Heme and Porphyrin with C-Glycine or C δ-Aminolevulinic Acid.
Methods Mol Biol. 2024;2839:225-231. doi: 10.1007/978-1-0716-4043-2_12.
6
Ferroptosis: principles and significance in health and disease.
J Hematol Oncol. 2024 Jun 6;17(1):41. doi: 10.1186/s13045-024-01564-3.
7
Iron Absorption: Molecular and Pathophysiological Aspects.
Metabolites. 2024 Apr 17;14(4):228. doi: 10.3390/metabo14040228.
8
Minimizing higher-order aggregation maximizes iron mobilization by small molecules.
Nat Chem Biol. 2024 Oct;20(10):1282-1293. doi: 10.1038/s41589-024-01596-3. Epub 2024 Apr 25.
9
Oral iron therapy: Current concepts and future prospects for improving efficacy and outcomes.
Br J Haematol. 2024 Mar;204(3):759-773. doi: 10.1111/bjh.19268. Epub 2024 Jan 22.
10
Inflammation alters iron distribution in bone and spleen in mice.
Metallomics. 2023 Oct 4;15(10). doi: 10.1093/mtomcs/mfad055.

本文引用的文献

1
Misregulation of iron homeostasis in amyotrophic lateral sclerosis.
Postepy Hig Med Dosw (Online). 2016 Jun 30;70(0):709-21. doi: 10.5604/17322693.1208036.
2
Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus.
Science. 2016 May 27;352(6289):1105-9. doi: 10.1126/science.aaf1018.
3
Fish to Learn: Insights into Blood Development and Blood Disorders from Zebrafish Hematopoiesis.
Hum Gene Ther. 2016 Apr;27(4):287-94. doi: 10.1089/hum.2016.024.
4
Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons.
Science. 2016 May 6;352(6286):aaf2669. doi: 10.1126/science.aaf2669. Epub 2016 Mar 10.
5
Airway acidification initiates host defense abnormalities in cystic fibrosis mice.
Science. 2016 Jan 29;351(6272):503-7. doi: 10.1126/science.aad5589.
6
Distribution of manganese and other biometals in flatiron mice.
Biometals. 2016 Feb;29(1):147-55. doi: 10.1007/s10534-015-9904-2. Epub 2015 Dec 22.
7
C3-OH of Amphotericin B Plays an Important Role in Ion Conductance.
J Am Chem Soc. 2015 Dec 9;137(48):15102-4. doi: 10.1021/jacs.5b05766. Epub 2015 Nov 30.
8
Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.
J Org Chem. 2015 Oct 2;80(19):9603-9. doi: 10.1021/acs.joc.5b01584.
9
Restored Physiology in Protein-Deficient Yeast by a Small Molecule Channel.
J Am Chem Soc. 2015 Aug 19;137(32):10096-9. doi: 10.1021/jacs.5b05765. Epub 2015 Aug 7.
10
Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts.
Eur J Pharm Sci. 2015 Aug 30;76:181-91. doi: 10.1016/j.ejps.2015.05.008. Epub 2015 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验