Suppr超能文献

用喹唑啉二酮绕过氟喹诺酮耐药性:对药物-gyrase-DNA复合物的研究及其对药物设计的启示

Bypassing fluoroquinolone resistance with quinazolinediones: studies of drug-gyrase-DNA complexes having implications for drug design.

作者信息

Drlica Karl, Mustaev Arkady, Towle Tyrell R, Luan Gan, Kerns Robert J, Berger James M

机构信息

Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences , 225 Warren Street, Newark, New Jersey 07103, United States.

出版信息

ACS Chem Biol. 2014 Dec 19;9(12):2895-904. doi: 10.1021/cb500629k. Epub 2014 Nov 4.

Abstract

Widespread fluoroquinolone resistance has drawn attention to quinazolinediones (diones), fluoroquinolone-like topoisomerase poisons that are unaffected by common quinolone-resistance mutations. To better understand differences between quinolones and diones, we examined their impact on the formation of cleaved complexes (drug-topoisomerase-DNA complexes in which the DNA moiety is broken) with gyrase, one of two bacterial targets of the drugs. Formation of cleaved complexes, measured by linearization of a circular DNA substrate, required lower concentrations of quinolone than dione. The reverse reaction, detected as resealing of DNA breaks in cleaved complexes, required higher temperatures and EDTA concentrations for quinolones than diones. The greater stability of quinolone-containing complexes was attributed to the unique ability of the quinolone C3/C4 keto acid to complex with magnesium and form a previously described drug-magnesium-water bridge with GyrA-Ser83 and GyrA-Asp87. A nearby substitution in GyrA (G81C) reduced activity differences between quinolone and dione, indicating that resistance due to this variation derives from perturbation of the magnesium-water bridge. To increase dione activity, we examined a relatively small, flexible C-7-3-(aminomethyl)pyrrolidinyl substituent, which is distal to the bridging C3/C4 keto acid substituent of quinolones. The 3-(aminomethyl)pyrrolidinyl group at position C-7 was capable of forming binding interactions with GyrB-Glu466, as indicated by inspection of crystal structures, computer-aided docking, and measurement of cleaved-complex formation with mutant and wild-type GyrB proteins. Thus, modification of dione C-7 substituents constitutes a strategy for obtaining compounds active against common quinolone-resistant mutants.

摘要

广泛存在的氟喹诺酮耐药性已引起人们对喹唑啉二酮(二酮)的关注,喹唑啉二酮是一类类似氟喹诺酮的拓扑异构酶毒物,不受常见喹诺酮耐药突变的影响。为了更好地理解喹诺酮和二酮之间的差异,我们研究了它们对与回旋酶形成切割复合物(药物-拓扑异构酶-DNA复合物,其中DNA部分被切断)的影响,回旋酶是这些药物的两个细菌靶点之一。通过环状DNA底物的线性化来测量切割复合物的形成,与二酮相比,喹诺酮形成切割复合物所需的浓度更低。作为切割复合物中DNA断裂重新封闭而检测到的逆反应,喹诺酮比二酮需要更高的温度和EDTA浓度。含喹诺酮复合物的更高稳定性归因于喹诺酮C3/C4酮酸与镁络合并与GyrA-Ser83和GyrA-Asp87形成先前描述的药物-镁-水桥的独特能力。GyrA中的一个附近取代(G81C)减少了喹诺酮和二酮之间的活性差异,表明由于这种变异导致的耐药性源于镁-水桥的扰动。为了提高二酮的活性,我们研究了一个相对较小的、灵活的C-7-3-(氨甲基)吡咯烷基取代基,它位于喹诺酮桥接C3/C4酮酸取代基的远端。如通过晶体结构检查、计算机辅助对接以及用突变型和野生型GyrB蛋白测量切割复合物形成所表明的,C-7位的3-(氨甲基)吡咯烷基能够与GyrB-Glu466形成结合相互作用。因此,修饰二酮的C-7取代基构成了获得对常见喹诺酮耐药突变体有活性的化合物的一种策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/679f/4273985/2a996301c2f2/cb-2014-00629k_0001.jpg

相似文献

2
Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
J Biol Chem. 2014 May 2;289(18):12300-12. doi: 10.1074/jbc.M113.529164. Epub 2014 Feb 4.
4
Functional Characterization of the DNA Gyrases in Fluoroquinolone-Resistant Mutants of Francisella novicida.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02277-16. Print 2017 Apr.
7
Impact of mutations in DNA gyrase genes on quinolone resistance in Campylobacter jejuni.
Drug Test Anal. 2016 Oct;8(10):1071-1076. doi: 10.1002/dta.1937. Epub 2016 Feb 9.
8
Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV.
Antimicrob Agents Chemother. 2009 Sep;53(9):3822-31. doi: 10.1128/AAC.00113-09. Epub 2009 Jun 29.
9
Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge.
Antimicrob Agents Chemother. 2014 Dec;58(12):7182-7. doi: 10.1128/AAC.03734-14. Epub 2014 Sep 22.
10
The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone.
Biochimie. 2019 May;160:24-27. doi: 10.1016/j.biochi.2019.02.002. Epub 2019 Feb 11.

引用本文的文献

2
Target-Mediated Fluoroquinolone Resistance in : Actions of Ciprofloxacin against Gyrase and Topoisomerase IV.
ACS Infect Dis. 2024 Apr 12;10(4):1351-1360. doi: 10.1021/acsinfecdis.4c00041. Epub 2024 Mar 4.
3
Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay.
ACS Pharmacol Transl Sci. 2022 Sep 2;5(10):932-944. doi: 10.1021/acsptsci.2c00113. eCollection 2022 Oct 14.
4
Dynamic Intramolecular Cap for Preserving Metallodrug Integrity─A Case of Catalytic Fluoroquinolones.
J Med Chem. 2022 Oct 27;65(20):14049-14065. doi: 10.1021/acs.jmedchem.2c01302. Epub 2022 Oct 11.
5
Rational design, synthesis and testing of novel tricyclic topoisomerase inhibitors for the treatment of bacterial infections part 2.
RSC Med Chem. 2020 Sep 18;11(12):1379-1385. doi: 10.1039/d0md00175a. eCollection 2020 Dec 17.
6
Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance.
Molecules. 2020 Dec 1;25(23):5662. doi: 10.3390/molecules25235662.
8
The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone.
Biochimie. 2019 May;160:24-27. doi: 10.1016/j.biochi.2019.02.002. Epub 2019 Feb 11.

本文引用的文献

1
Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
J Biol Chem. 2014 May 2;289(18):12300-12. doi: 10.1074/jbc.M113.529164. Epub 2014 Feb 4.
5
Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance.
Biochemistry. 2012 Jan 10;51(1):370-81. doi: 10.1021/bi2013905. Epub 2011 Dec 16.
6
Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide.
Science. 2011 Jul 22;333(6041):459-62. doi: 10.1126/science.1204117.
7
Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis.
Antimicrob Agents Chemother. 2011 May;55(5):2335-43. doi: 10.1128/AAC.00033-11. Epub 2011 Mar 7.
8
Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV.
Nucleic Acids Res. 2011 Jun;39(11):4808-17. doi: 10.1093/nar/gkr018. Epub 2011 Feb 7.
9
Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance.
Nat Struct Mol Biol. 2010 Sep;17(9):1152-3. doi: 10.1038/nsmb.1892. Epub 2010 Aug 29.
10
The use of divalent metal ions by type II topoisomerases.
Metallomics. 2010 Jul;2(7):450-9. doi: 10.1039/c003759a. Epub 2010 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验