Suppr超能文献

伊朗德黑兰医院耐环丙沙星分离株中及突变的特征分析。

Characterization of and mutations in ciprofloxacin-resistant isolates from Tehran hospitals in Iran.

作者信息

Farahi Rosetta Moshirian, Ali Ahya Abdi, Gharavi Sara

机构信息

Department of Microbiology, Alzahra University, Tehran, Iran.

Department of Biotechnology, Alzahra University, Tehran, Iran.

出版信息

Iran J Microbiol. 2018 Aug;10(4):242-249.

Abstract

BACKGROUND AND OBJECTIVES

, a major cause of several infectious diseases, has become a hazardous resistant pathogen. One of the factors contributing to quinolone resistance in is mutations occurring in and genes encoding the A subunits of type II and IV topoisomerases, respectively, in quinolone resistance determining regions (QRDR) of the bacterial chromosome.

MATERIALS AND METHODS

Thirty seven isolates from patients with burn wounds and 20 isolates from blood, urine and sputum specimen were collected. Minimum Inhibitory Concentrations (MICs) of ciprofloxacin were determined by agar diffusion assay. Subsequently, QRDRs regions of and were amplified from resistant isolates and were assessed for mutations involved in ciprofloxacin resistance after sequencing.

RESULTS

Nine isolates with MIC≥8 μg/ml had a mutation in (Thr83→Ile). Amongst these, seven isolates also had a mutation in (Ser87→ Leu or Trp) indicating that the prevalent mutation in is Thr83Ile and Ser87Leu/Trp in . No single mutation was observed.

CONCLUSION

It seems that mutations in are concomitant with mutations in which might lead to high-level ciprofloxacin resistance in isolates from patients with burn wounds and urinary tract infections.

摘要

背景与目的

作为多种传染病的主要病因,已成为一种具有危害的耐药病原体。导致喹诺酮耐药的因素之一是细菌染色体喹诺酮耐药决定区(QRDR)中分别编码II型和IV型拓扑异构酶A亚基的gyrA和parC基因发生突变。

材料与方法

收集了37株烧伤患者伤口分离株以及20株血液、尿液和痰液标本分离株。采用琼脂扩散法测定环丙沙星的最低抑菌浓度(MIC)。随后,从耐药分离株中扩增gyrA和parC的QRDR区域,并在测序后评估与环丙沙星耐药相关的突变。

结果

9株MIC≥8μg/ml的分离株gyrA发生了Thr83→Ile突变。其中,7株分离株parC也发生了Ser87→Leu或Trp突变,表明gyrA中常见的突变是Thr83Ile,parC中是Ser87Leu/Trp。未观察到单一的parC突变。

结论

似乎gyrA突变与parC突变同时存在,这可能导致烧伤患者和尿路感染患者分离株对环丙沙星产生高水平耐药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0497/6243147/dd54dc933b6b/IJM-10-242-g001.jpg

相似文献

2
The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran.
Braz J Microbiol. 2016 Oct-Dec;47(4):925-930. doi: 10.1016/j.bjm.2016.07.016. Epub 2016 Jul 26.
4
The role of Gene Mutations () in Resistance to Ciprofloxacin in Clinical Isolates of .
Iran J Pathol. 2021 Fall;16(4):426-432. doi: 10.30699/IJP.2021.520570.2542. Epub 2021 Jul 6.
5
Mutations in the , , and genes provide functional insights into the fluoroquinolone-resistant isolated in Vietnam.
Infect Drug Resist. 2018 Feb 28;11:275-282. doi: 10.2147/IDR.S147581. eCollection 2018.
7
Quinolone-resistant clinical strains of isolated from University Hospital in Tunisia.
3 Biotech. 2018 Jan;8(1):1. doi: 10.1007/s13205-017-1019-8. Epub 2017 Nov 13.
9
Mutations in the quinolone resistance-determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil.
Braz J Microbiol. 2012 Oct;43(4):1309-14. doi: 10.1590/S1517-838220120004000010. Epub 2012 Jun 1.
10
Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa.
Microb Drug Resist. 1998 Winter;4(4):257-61. doi: 10.1089/mdr.1998.4.257.

引用本文的文献

3
Survey of probable synergism between melittin and ciprofloxacin, rifampicin, and chloramphenicol against multidrug-resistant .
Front Microbiol. 2024 Nov 21;15:1480299. doi: 10.3389/fmicb.2024.1480299. eCollection 2024.
4
Resistome phylodynamics of multidrug-resistant isolated from diarrheal patients.
Microbiol Spectr. 2025 Jan 7;13(1):e0163524. doi: 10.1128/spectrum.01635-24. Epub 2024 Nov 29.
5
Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation.
JAC Antimicrob Resist. 2024 Aug 14;6(4):dlae127. doi: 10.1093/jacamr/dlae127. eCollection 2024 Aug.
7
The First Saudi Report of Novel and Common Mutations in the and Genes Among Spp. Clinical Isolates Recovered from Taif Area.
Infect Drug Resist. 2022 Jul 16;15:3801-3814. doi: 10.2147/IDR.S372027. eCollection 2022.
8
Acidic Microenvironment Determines Antibiotic Susceptibility and Biofilm Formation of .
Front Microbiol. 2021 Nov 19;12:747834. doi: 10.3389/fmicb.2021.747834. eCollection 2021.

本文引用的文献

1
The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran.
Braz J Microbiol. 2016 Oct-Dec;47(4):925-930. doi: 10.1016/j.bjm.2016.07.016. Epub 2016 Jul 26.
2
Clinical and Molecular Epidemiology of Multidrug-Resistant P. aeruginosa Carrying aac(6')-Ib-cr, qnrS1 and blaSPM Genes in Brazil.
PLoS One. 2016 May 24;11(5):e0155914. doi: 10.1371/journal.pone.0155914. eCollection 2016.
3
Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology.
Int J Antimicrob Agents. 2015 Jun;45(6):568-85. doi: 10.1016/j.ijantimicag.2015.03.001. Epub 2015 Mar 24.
5
Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success.
Trends Microbiol. 2014 Aug;22(8):438-45. doi: 10.1016/j.tim.2014.04.007. Epub 2014 May 16.
6
Mechanism of quinolone action and resistance.
Biochemistry. 2014 Mar 18;53(10):1565-74. doi: 10.1021/bi5000564. Epub 2014 Mar 7.
7
gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon.
J Infect Chemother. 2013 Feb;19(1):77-81. doi: 10.1007/s10156-012-0455-y. Epub 2012 Jul 21.
10
Evaluation of fluoroquinolone resistance mechanisms in Pseudomonas aeruginosa multidrug resistance clinical isolates.
Microb Drug Resist. 2012 Feb;18(1):23-32. doi: 10.1089/mdr.2011.0019. Epub 2011 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验