From the Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.
J Biol Chem. 2014 May 2;289(18):12300-12. doi: 10.1074/jbc.M113.529164. Epub 2014 Feb 4.
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.
DNA 回旋酶和拓扑异构酶 IV 通过切断 DNA、使双链 DNA 通过切口并重新封闭切口来控制细菌 DNA 的拓扑结构。这一过程易受氟喹诺酮类药物的可逆破坏,这类抗菌药物在形成药物-酶-DNA 复合物时会使 DNA 断裂,复合物中存在 DNA 断裂,因此被称为断裂复合物。这些复合物已被结晶,并发现氟喹诺酮类药物的 C-7 环系统面向 GyrB/ParE 亚基。正如 X 射线晶体学所预期的那样,一种巯基反应性、C-7 修饰的氯乙酰基环丙沙星(Cip-AcCl)衍生物与突变的 GyrB-Cys(466)回旋酶形成交联的断裂复合物,这一点可以从 EDTA 和热处理逆转的抗性得到证明。令人惊讶的是,与突变的 GyrA-G81C 回旋酶形成的复合物也很容易发生交联,从而揭示了一种在晶体结构中未观察到的新型药物-回旋酶相互作用。氟喹诺酮与 GyrA-G81C 回旋酶之间的交联与对大肠杆菌的喹诺酮耐药 GyrA-G81C 变体及其分枝杆菌相当物(GyrA-G89C)的 Cip-AcCl 具有异常的抑菌活性相关。Cip-AcCl 介导的不可逆 DNA 复制抑制为 GyrA-药物交联提供了进一步的证据。这些数据共同证明了氟喹诺酮的 C-7 环与 GyrA 和 GyrB 之间存在相互作用。由于晶体结构中切割复合物中 GyrA-Gly(81)和 GyrB-Glu(466)残基之间的距离很远(17 Å),因此必须存在两种喹诺酮结合模式。两种结合模式的存在增加了形成多种喹诺酮-酶-DNA 复合物的可能性,这一发现为探索和利用 II 型 DNA 拓扑异构酶的药物结构与活性之间的关系开辟了新的途径。