Suppr超能文献

氟喹诺酮-拓扑异构酶-DNA 复合物:两种药物结合模式。

Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

机构信息

From the Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.

出版信息

J Biol Chem. 2014 May 2;289(18):12300-12. doi: 10.1074/jbc.M113.529164. Epub 2014 Feb 4.

Abstract

DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

摘要

DNA 回旋酶和拓扑异构酶 IV 通过切断 DNA、使双链 DNA 通过切口并重新封闭切口来控制细菌 DNA 的拓扑结构。这一过程易受氟喹诺酮类药物的可逆破坏,这类抗菌药物在形成药物-酶-DNA 复合物时会使 DNA 断裂,复合物中存在 DNA 断裂,因此被称为断裂复合物。这些复合物已被结晶,并发现氟喹诺酮类药物的 C-7 环系统面向 GyrB/ParE 亚基。正如 X 射线晶体学所预期的那样,一种巯基反应性、C-7 修饰的氯乙酰基环丙沙星(Cip-AcCl)衍生物与突变的 GyrB-Cys(466)回旋酶形成交联的断裂复合物,这一点可以从 EDTA 和热处理逆转的抗性得到证明。令人惊讶的是,与突变的 GyrA-G81C 回旋酶形成的复合物也很容易发生交联,从而揭示了一种在晶体结构中未观察到的新型药物-回旋酶相互作用。氟喹诺酮与 GyrA-G81C 回旋酶之间的交联与对大肠杆菌的喹诺酮耐药 GyrA-G81C 变体及其分枝杆菌相当物(GyrA-G89C)的 Cip-AcCl 具有异常的抑菌活性相关。Cip-AcCl 介导的不可逆 DNA 复制抑制为 GyrA-药物交联提供了进一步的证据。这些数据共同证明了氟喹诺酮的 C-7 环与 GyrA 和 GyrB 之间存在相互作用。由于晶体结构中切割复合物中 GyrA-Gly(81)和 GyrB-Glu(466)残基之间的距离很远(17 Å),因此必须存在两种喹诺酮结合模式。两种结合模式的存在增加了形成多种喹诺酮-酶-DNA 复合物的可能性,这一发现为探索和利用 II 型 DNA 拓扑异构酶的药物结构与活性之间的关系开辟了新的途径。

相似文献

1
Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
J Biol Chem. 2014 May 2;289(18):12300-12. doi: 10.1074/jbc.M113.529164. Epub 2014 Feb 4.
3
The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone.
Biochimie. 2019 May;160:24-27. doi: 10.1016/j.biochi.2019.02.002. Epub 2019 Feb 11.
4
Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones.
Nucleic Acids Res. 2016 Apr 20;44(7):3304-16. doi: 10.1093/nar/gkw161. Epub 2016 Mar 16.
5
Dual Escherichia coli DNA Gyrase A and B Inhibitors with Antibacterial Activity.
ChemMedChem. 2020 Feb 5;15(3):265-269. doi: 10.1002/cmdc.201900607. Epub 2019 Dec 10.
6
Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914.
J Biol Chem. 2015 Aug 21;290(34):20984-20994. doi: 10.1074/jbc.M115.663534. Epub 2015 Jul 6.
9
Functional Characterization of the DNA Gyrases in Fluoroquinolone-Resistant Mutants of Francisella novicida.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02277-16. Print 2017 Apr.
10
Impact of mutations in DNA gyrase genes on quinolone resistance in Campylobacter jejuni.
Drug Test Anal. 2016 Oct;8(10):1071-1076. doi: 10.1002/dta.1937. Epub 2016 Feb 9.

引用本文的文献

3
Suppression of amber stop codons impairs pathogenicity in Salmonella.
FEBS Lett. 2025 Feb;599(4):476-487. doi: 10.1002/1873-3468.15075. Epub 2024 Dec 12.
4
Structural basis of chiral wrap and T-segment capture by DNA gyrase.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2407398121. doi: 10.1073/pnas.2407398121. Epub 2024 Nov 26.
5
A machine-learning based model for automated recommendation of individualized treatment of rifampicin-resistant tuberculosis.
PLoS One. 2024 Sep 6;19(9):e0306101. doi: 10.1371/journal.pone.0306101. eCollection 2024.
7
Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation.
JAC Antimicrob Resist. 2024 Aug 14;6(4):dlae127. doi: 10.1093/jacamr/dlae127. eCollection 2024 Aug.
9
Quinolone scaffolds as potential drug candidates against infectious microbes: a review.
Mol Divers. 2025 Feb;29(1):711-737. doi: 10.1007/s11030-024-10862-4. Epub 2024 Apr 29.
10
Target-Mediated Fluoroquinolone Resistance in : Actions of Ciprofloxacin against Gyrase and Topoisomerase IV.
ACS Infect Dis. 2024 Apr 12;10(4):1351-1360. doi: 10.1021/acsinfecdis.4c00041. Epub 2024 Mar 4.

本文引用的文献

2
Isolation and quantitation of topoisomerase complexes accumulated on Escherichia coli chromosomal DNA.
Antimicrob Agents Chemother. 2012 Nov;56(11):5458-64. doi: 10.1128/AAC.01182-12. Epub 2012 Aug 6.
3
Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance.
Biochemistry. 2012 Jan 10;51(1):370-81. doi: 10.1021/bi2013905. Epub 2011 Dec 16.
5
Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis.
Antimicrob Agents Chemother. 2011 May;55(5):2335-43. doi: 10.1128/AAC.00033-11. Epub 2011 Mar 7.
6
Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance.
Nat Struct Mol Biol. 2010 Sep;17(9):1152-3. doi: 10.1038/nsmb.1892. Epub 2010 Aug 29.
7
The use of divalent metal ions by type II topoisomerases.
Metallomics. 2010 Jul;2(7):450-9. doi: 10.1039/c003759a. Epub 2010 May 21.
8
Type IIA topoisomerase inhibition by a new class of antibacterial agents.
Nature. 2010 Aug 19;466(7309):935-40. doi: 10.1038/nature09197. Epub 2010 Aug 4.
9
A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function.
Nucleic Acids Res. 2010 Nov;38(21):7830-44. doi: 10.1093/nar/gkq665. Epub 2010 Jul 31.
10
Structural basis of gate-DNA breakage and resealing by type II topoisomerases.
PLoS One. 2010 Jun 28;5(6):e11338. doi: 10.1371/journal.pone.0011338.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验