Suppr超能文献

基于网络的子网特征揭示了急性髓系白血病治疗的潜力。

Network-based sub-network signatures unveil the potential for acute myeloid leukemia therapy.

作者信息

Shi Mingguang, Wu Min, Pan Ping, Zhao Rui

机构信息

School of Electric Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China.

出版信息

Mol Biosyst. 2014 Dec;10(12):3290-7. doi: 10.1039/c4mb00440j.

Abstract

Although gene expression profiling studies of acute myeloid leukemia (AML) patients have provided key insights into potential diagnostic and prognostic markers and therapeutic targets, it is not clear that the patterns of molecular heterogeneity affect the tumor biology and respond to the treatment. We hypothesized that network-based gene expression signatures of AML represent the mechanistically important genes and may improve the predicted performance of prognosis and clinical outcome. We provided the random walk with restart (RWR) analysis to discover the sub-network of genomic alterations. The RWR approach integrates the signature genes derived from the random forest (RF) analysis as "seeds" to identify genes critical to the AML recurrence phenotype. To test whether the 81-gene biomarkers could predict AML recurrence, we developed Survival Support Vector Machine (SSVM) models using a gene expression dataset and test on an independent dataset. The random forest classifier was built based on 81-gene biomarkers to separate the AML patients into "recurrence" and "non-recurrence" groups. The 81-gene biomarkers showed significant enrichment related to cancer pathophysiology and provided good coverage of sub-network biomarkers and AML-related signaling pathways. The SSVM-based score was significantly associated with overall survival (hazard ratio [HR], 2.16; 95% confidence interval [CI], 1.18-3.97; p = 0.01). Similar results were obtained with reversed training and testing datasets (hazard ratio [HR], 1.6; 95% confidence interval [CI], 1.08-2.37; p = 0.02). The 81-gene biomarker based RF classifier improved classification performance. Overall, 81-gene biomarkers might be useful prognostic and predictive molecular markers to predict the clinical outcome of AML patients.

摘要

尽管对急性髓系白血病(AML)患者的基因表达谱研究为潜在的诊断、预后标志物及治疗靶点提供了关键见解,但尚不清楚分子异质性模式是否会影响肿瘤生物学及对治疗的反应。我们假设基于网络的AML基因表达特征代表了具有重要机制意义的基因,可能会改善预后和临床结果的预测性能。我们提供了带重启的随机游走(RWR)分析以发现基因组改变的子网络。RWR方法将源自随机森林(RF)分析的特征基因整合为“种子”,以识别对AML复发表型至关重要的基因。为了测试这81个基因的生物标志物是否能预测AML复发,我们使用一个基因表达数据集开发了生存支持向量机(SSVM)模型,并在一个独立数据集上进行测试。基于这81个基因的生物标志物构建随机森林分类器,将AML患者分为“复发”和“非复发”组。这81个基因的生物标志物显示出与癌症病理生理学显著相关,并很好地覆盖了子网络生物标志物和AML相关信号通路。基于SSVM的评分与总生存期显著相关(风险比[HR],2.16;95%置信区间[CI],1.18 - 3.97;p = 0.01)。对训练和测试数据集进行反向操作也得到了类似结果(风险比[HR],1.6;95%置信区间[CI],1.08 - 2.37;p = 0.02)。基于81个基因生物标志物的RF分类器提高了分类性能。总体而言,81个基因的生物标志物可能是预测AML患者临床结果的有用的预后和预测分子标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验