Suppr超能文献

串联补偿线路故障分类的改进:切比雪夫神经网络训练算法的比较评估。

Improved Fault Classification in Series Compensated Transmission Line: Comparative Evaluation of Chebyshev Neural Network Training Algorithms.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Aug;27(8):1631-42. doi: 10.1109/TNNLS.2014.2360879. Epub 2014 Oct 13.

Abstract

This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications.

摘要

本文提出了切比雪夫神经网络(ChNN)作为一种改进的人工智能技术,用于电力系统保护研究,并研究了两种 ChNN 学习算法在串联补偿线路故障分类中的性能。训练算法是最小二乘 Levenberg-Marquardt(LSLM)和带有遗忘因子的递归最小二乘算法(RLSFF)。这些算法的性能是基于它们在将故障电流参数与线路故障事件相关联的泛化能力来评估的。该算法响应速度快,因为它仅利用了保护端测量的三相电流的故障后样本,对应半周期持续时间。在仅使用生成的故障数据的一小部分进行训练后,这些算法已经在具有广泛系统和故障参数变化的大量故障情况下进行了测试。根据本文进行的研究,虽然 RLSFF 算法在串联补偿线路故障分类应用中用于训练 ChNN 时速度更快,但 LSLM 算法在测试中的准确性最高。结果证明,所提出的基于 ChNN 的方法准确、快速、易于设计,并且不受补偿水平的影响。因此,它适用于数字保护应用。

相似文献

1
Improved Fault Classification in Series Compensated Transmission Line: Comparative Evaluation of Chebyshev Neural Network Training Algorithms.
IEEE Trans Neural Netw Learn Syst. 2016 Aug;27(8):1631-42. doi: 10.1109/TNNLS.2014.2360879. Epub 2014 Oct 13.
3
Fault detection and classification in electrical power transmission system using artificial neural network.
Springerplus. 2015 Jul 9;4:334. doi: 10.1186/s40064-015-1080-x. eCollection 2015.
5
The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm.
Protein Cell. 2016 Oct;7(10):735-748. doi: 10.1007/s13238-016-0302-5. Epub 2016 Aug 9.
6
Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
Artif Intell Med. 2012 Jun;55(2):117-26. doi: 10.1016/j.artmed.2012.02.001. Epub 2012 Apr 12.
7
A fast and convergent stochastic MLP learning algorithm.
Int J Neural Syst. 2001 Dec;11(6):573-83. doi: 10.1142/S0129065701000977.
9
An on-line modified least-mean-square algorithm for training neurofuzzy controllers.
ISA Trans. 2007 Apr;46(2):181-8. doi: 10.1016/j.isatra.2006.08.004. Epub 2007 Mar 6.
10
Generalized RLS approach to the training of neural networks.
IEEE Trans Neural Netw. 2006 Jan;17(1):19-34. doi: 10.1109/TNN.2005.860857.

引用本文的文献

1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验