Suppr超能文献

用于双回输电线路故障诊断的深度学习与小波包变换

Deep learning and wavelet packet transform for fault diagnosis in double circuit transmission lines.

作者信息

Ali Ziad M, Esmail Ehab M

机构信息

Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addawaser 11991, Al-Kharj, Saudi Arabia.

Mechatronics Engineering Department, High Institute of Engineering and Technology, Elmahala Elkobra, Egypt.

出版信息

Sci Rep. 2025 Aug 17;15(1):30145. doi: 10.1038/s41598-025-15583-8.

Abstract

Fault diagnosis in double-circuit transmission lines (DCTLs) involves fault detection, section identification, and accurate location, critical components in ensuring robust protection schemes. This paper proposes an advanced directional protection framework that integrates wavelet packet transform (WPT) with deep learning (DL) models, utilizing double-ended measurements of three-phase currents and voltages. The system is modeled using a distributed parameter line representation that includes shunt capacitance. The WPT technique extracts approximation coefficients from current and voltage signals, which serve as inputs to deep learning models, particularly using the mother wavelet packet db10 for optimal decomposition. The proposed method comprises two main stages: (i) detection and identification of the faulted section and direction, and (ii) estimation of the fault location from the relaying point. The approach is evaluated using multiple deep learning architectures, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), and implemented in MATLAB. Simulation results across diverse fault scenarios, varying in location, resistance, and inception angle, demonstrate high accuracy and robustness. Compared with other hybrid approaches integrating WPT with artificial neural networks (ANNs) and adaptive-network-based fuzzy inference systems (ANFIS), the proposed method achieves superior precision, with an average error of only 0.03%. Notably, the technique offers primary protection for most line sections and backup coverage for adjacent areas.

摘要

双回输电线路(DCTLs)的故障诊断涉及故障检测、区段识别和精确定位,这些是确保可靠保护方案的关键要素。本文提出了一种先进的方向保护框架,该框架将小波包变换(WPT)与深度学习(DL)模型相结合,利用三相电流和电压的双端测量值。该系统采用包含并联电容的分布参数线路模型进行建模。WPT技术从电流和电压信号中提取近似系数,这些系数作为深度学习模型的输入,特别是使用母小波包db10进行最优分解。所提出的方法包括两个主要阶段:(i)故障区段和方向的检测与识别,以及(ii)从继电点估计故障位置。该方法使用包括卷积神经网络(CNNs)和递归神经网络(RNNs)在内的多种深度学习架构进行评估,并在MATLAB中实现。在不同故障场景下(位置、电阻和起始角度各不相同)的仿真结果表明,该方法具有很高的准确性和鲁棒性。与其他将WPT与人工神经网络(ANNs)和基于自适应网络的模糊推理系统(ANFIS)相结合的混合方法相比,所提出的方法具有更高的精度,平均误差仅为0.03%。值得注意的是,该技术为大多数线路区段提供主保护,并为相邻区域提供后备保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07be/12358547/3b300f7ec583/41598_2025_15583_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验