Suppr超能文献

从 fMRI 脑成像中学习视频记忆能力的计算模型。

Learning Computational Models of Video Memorability from fMRI Brain Imaging.

出版信息

IEEE Trans Cybern. 2015 Aug;45(8):1692-703. doi: 10.1109/TCYB.2014.2358647. Epub 2014 Oct 9.

Abstract

Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

摘要

一般来说,人类大脑对各种视觉媒体的记忆程度是不同的。本文探讨了一种新的视频片段可记忆性建模方向,通过从脑功能磁共振成像 (fMRI) 中学习来自动预测它们的可记忆性。我们通过整合低水平视听特征的功能和通过 fMRI 进行大脑活动解码的功能,提出了一个新颖的计算框架。首先,进行用户研究实验,为衡量视频可记忆性创建一个真实数据库,并在该数据库中检查一组有效的低水平视听特征。然后,当观看视频片段时,获取受试者的大脑 fMRI 数据。使用通用大脑参考系统提取传达记忆视频大脑活动的 fMRI 衍生特征。最后,由于 fMRI 扫描既昂贵又耗时,因此在我们的基准数据集上学习一个计算模型,其目标是使用联合子空间学习最大化低水平视听特征和 fMRI 衍生特征之间的相关性。然后,无需 fMRI 扫描即可使用学习模型自动预测视频的可记忆性。在公开的图像和视频数据库上的评估证明了所提出框架的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验