Suppr超能文献

小乳腺癌:何时以及如何治疗。

Small breast cancers: when and how to treat.

机构信息

European Organization for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium.

Breast International Group Headquarters (BIG Aisbl), Brussels, Belgium.

出版信息

Cancer Treat Rev. 2014 Dec;40(10):1129-36. doi: 10.1016/j.ctrv.2014.09.004. Epub 2014 Oct 5.

Abstract

Small (T1a, b), lymph node negative breast tumors represent an entity diagnosed with increasing frequency due to the implementation of wide-scale screening programs. Patients bearing such tumors usually exhibit favorable long-term outcomes, with low breast cancer mortality rates at 10years, even in the absence of adjuvant chemotherapy. However, most available data derive from retrospective studies. Additionally, a subset of patients with these tumors experience recurrence of the disease, indicating that early tumor stage itself is not a sufficient prognosticator. It is of paramount importance to refine the prognosis of this population, identifying patients with high risk of recurrence, for whom adjuvant treatment is needed. The underlying biology of the disease provides relevant information, such as grade and status of hormone receptors and HER-2 (human epidermal growth factor receptor 2), with high grade, triple negative and HER-2-positive tumors having worse prognosis. Additionally, multigene signatures may improve further the prognostication of patients with small, node negative breast cancers. Further research for this increasingly frequent group of patients is urgently needed, so that better informed clinical decision making, in particular regarding adjuvant chemotherapy, can occur.

摘要

由于广泛实施筛查计划,小(T1a、b)、淋巴结阴性的乳腺肿瘤的诊断频率不断增加。这些肿瘤患者通常具有良好的长期预后,10 年内乳腺癌死亡率较低,即使没有辅助化疗也是如此。然而,大多数现有数据来自回顾性研究。此外,这些肿瘤患者中有一部分会出现疾病复发,这表明早期肿瘤分期本身并不是一个充分的预后指标。精确评估这部分人群的预后,识别出有复发高风险的患者,对这些患者进行辅助治疗至关重要。肿瘤的生物学特性提供了相关信息,如分级和激素受体及 HER-2(人表皮生长因子受体 2)的状态,高级别、三阴性和 HER-2 阳性肿瘤的预后更差。此外,多基因标志物可能进一步改善小、淋巴结阴性乳腺癌患者的预后预测。迫切需要对这一越来越常见的患者群体进行进一步研究,以便能够做出更明智的临床决策,特别是关于辅助化疗的决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验