Suppr超能文献

预期基于能量的受限玻尔兹曼机分类。

Expected energy-based restricted Boltzmann machine for classification.

机构信息

Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.

出版信息

Neural Netw. 2015 Apr;64:29-38. doi: 10.1016/j.neunet.2014.09.006. Epub 2014 Sep 28.

Abstract

In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain.

摘要

在分类任务中,受限玻尔兹曼机(RBM)主要用于第一阶段,既可以作为特征提取器,也可以为神经网络提供初始化。在本研究中,我们提出了一种有鉴别力的学习方法,以提供一种自我包含的 RBM 方法进行分类,该方法受到基于自由能的函数逼近(FE-RBM)的启发,最初是为强化学习而提出的。对于分类,FE-RBM 方法通过 RBM 的负自由能计算输入向量和类向量的输出。学习是通过使用均方误差训练目标的随机梯度下降来实现的。在早期的研究中,我们证明了通过将自由能缩放为与网络大小相关的常数,可以提高 FE-RBM 函数逼近的性能和鲁棒性。在本研究中,我们提出通过计算负期望能量(EE-RBM)而不是负自由能来计算输出,可以进一步提高 RBM 函数逼近的学习性能。为了创建深度学习架构,我们将多个 RBM 堆叠在彼此之上。我们还将类节点连接到所有隐藏层,以进一步提高性能。我们使用 MNIST 数据集和 NORB 数据集验证 EE-RBM 的分类性能,与标准神经网络、深度置信网络、分类 RBM 和支持向量机等其他分类器相比,表现出具有竞争力的性能。使用 NORB 数据集的目的是证明具有二进制输入节点的 EE-RBM 可以在连续输入域中实现高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验