Suppr超能文献

用互信息衡量玻尔兹曼机中隐藏单元的有用性。

Measuring the usefulness of hidden units in Boltzmann machines with mutual information.

机构信息

Department of Information and Computer Science, Aalto University School of Science, Finland.

Department of Information and Computer Science, Aalto University School of Science, Finland.

出版信息

Neural Netw. 2015 Apr;64:12-8. doi: 10.1016/j.neunet.2014.09.004. Epub 2014 Sep 28.

Abstract

Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are important models in deep learning, but it is often difficult to measure their performance in general, or measure the importance of individual hidden units in specific. We propose to use mutual information to measure the usefulness of individual hidden units in Boltzmann machines. The measure is fast to compute, and serves as an upper bound for the information the neuron can pass on, enabling detection of a particular kind of poor training results. We confirm experimentally that the proposed measure indicates how much the performance of the model drops when some of the units of an RBM are pruned away. We demonstrate the usefulness of the measure for early detection of poor training in DBMs.

摘要

受限玻尔兹曼机(RBM)和深度玻尔兹曼机(DBM)是深度学习中的重要模型,但通常难以全面衡量它们的性能,或者衡量特定情况下个别隐藏单元的重要性。我们建议使用互信息来衡量玻尔兹曼机中个别隐藏单元的有用性。该度量的计算速度很快,并且是神经元可以传递的信息量的上限,可以检测到特定类型的训练效果不佳的情况。我们通过实验证实,所提出的度量可以指示当 RBM 的某些单元被修剪掉时,模型的性能下降多少。我们证明了该度量在早期检测 DBM 中的训练不良情况方面的有用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验