Suppr超能文献

GWGGI:用于全基因组基因-基因相互作用分析的软件。

GWGGI: software for genome-wide gene-gene interaction analysis.

作者信息

Wei Changshuai, Lu Qing

机构信息

Department of Epidemiology and Biostatistics, Michigan State University, East Lansing 48824, MI, USA.

出版信息

BMC Genet. 2014 Oct 16;15:101. doi: 10.1186/s12863-014-0101-z.

Abstract

BACKGROUND

While the importance of gene-gene interactions in human diseases has been well recognized, identifying them has been a great challenge, especially through association studies with millions of genetic markers and thousands of individuals. Computationally efficient and powerful tools are in great need for the identification of new gene-gene interactions in high-dimensional association studies.

RESULT

We develop C++ software for genome-wide gene-gene interaction analyses (GWGGI). GWGGI utilizes tree-based algorithms to search a large number of genetic markers for a disease-associated joint association with the consideration of high-order interactions, and then uses non-parametric statistics to test the joint association. The package includes two functions, likelihood ratio Mann-Whitney (LRMW) and Tree Assembling Mann-Whitney (TAMW). We optimize the data storage and computational efficiency of the software, making it feasible to run the genome-wide analysis on a personal computer. The use of GWGGI was demonstrated by using two real data-sets with nearly 500 k genetic markers.

CONCLUSION

Through the empirical study, we demonstrated that the genome-wide gene-gene interaction analysis using GWGGI could be accomplished within a reasonable time on a personal computer (i.e., ~3.5 hours for LRMW and ~10 hours for TAMW). We also showed that LRMW was suitable to detect interaction among a small number of genetic variants with moderate-to-strong marginal effect, while TAMW was useful to detect interaction among a larger number of low-marginal-effect genetic variants.

摘要

背景

虽然基因-基因相互作用在人类疾病中的重要性已得到充分认识,但识别它们一直是一项巨大挑战,特别是通过对数百万个遗传标记和数千名个体进行关联研究来识别。在高维关联研究中,迫切需要计算效率高且功能强大的工具来识别新的基因-基因相互作用。

结果

我们开发了用于全基因组基因-基因相互作用分析(GWGGI)的C++软件。GWGGI利用基于树的算法,在考虑高阶相互作用的情况下,搜索大量遗传标记以寻找与疾病相关的联合关联,然后使用非参数统计来检验联合关联。该软件包包括两个函数,似然比曼-惠特尼(LRMW)和树组装曼-惠特尼(TAMW)。我们优化了软件的数据存储和计算效率,使得在个人计算机上运行全基因组分析成为可能。通过使用两个包含近50万个遗传标记的真实数据集展示了GWGGI的用途。

结论

通过实证研究,我们证明了使用GWGGI进行全基因组基因-基因相互作用分析可以在个人计算机上在合理时间内完成(即,LRMW约需3.5小时,TAMW约需10小时)。我们还表明,LRMW适用于检测少数具有中度至强边际效应的遗传变异之间的相互作用,而TAMW则有助于检测大量低边际效应遗传变异之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/4201693/17a5d904403d/12863_2014_101_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验