Suppr超能文献

一种在全基因组关联研究中识别高阶基因-基因相互作用的新方法:基于基因的多变量数据分析。

A novel method to identify high order gene-gene interactions in genome-wide association studies: gene-based MDR.

机构信息

Department of Statistics, Seoul National University, Seoul, South Korea.

出版信息

BMC Bioinformatics. 2012 Jun 11;13 Suppl 9(Suppl 9):S5. doi: 10.1186/1471-2105-13-S9-S5.

Abstract

BACKGROUND

Because common complex diseases are affected by multiple genes and environmental factors, it is essential to investigate gene-gene and/or gene-environment interactions to understand genetic architecture of complex diseases. After the great success of large scale genome-wide association (GWA) studies using the high density single nucleotide polymorphism (SNP) chips, the study of gene-gene interaction becomes a next challenge. Multifactor dimensionality reduction (MDR) analysis has been widely used for the gene-gene interaction analysis. In practice, however, it is not easy to perform high order gene-gene interaction analyses via MDR in genome-wide level because it requires exploring a huge search space and suffers from a computational burden due to high dimensionality.

RESULTS

We propose dimensional reduction analysis, Gene-MDR analysis for the fast and efficient high order gene-gene interaction analysis. The proposed Gene-MDR method is composed of two-step applications of MDR: within- and between-gene MDR analyses. First, within-gene MDR analysis summarizes each gene effect via MDR analysis by combining multiple SNPs from the same gene. Second, between-gene MDR analysis then performs interaction analysis using the summarized gene effects from within-gene MDR analysis. We apply the Gene-MDR method to bipolar disorder (BD) GWA data from Wellcome Trust Case Control Consortium (WTCCC). The results demonstrate that Gene-MDR is capable of detecting high order gene-gene interactions associated with BD.

CONCLUSION

By reducing the dimension of genome-wide data from SNP level to gene level, Gene-MDR efficiently identifies high order gene-gene interactions. Therefore, Gene-MDR can provide the key to understand complex disease etiology.

摘要

背景

由于常见的复杂疾病受多个基因和环境因素的影响,因此研究基因-基因和/或基因-环境相互作用对于理解复杂疾病的遗传结构至关重要。在使用高密度单核苷酸多态性 (SNP) 芯片进行大规模全基因组关联 (GWA) 研究取得巨大成功之后,基因-基因相互作用的研究成为下一个挑战。多因子降维分析 (MDR) 分析已广泛用于基因-基因相互作用分析。然而,在全基因组水平上通过 MDR 进行高阶基因-基因相互作用分析并不容易,因为它需要探索巨大的搜索空间,并由于高维性而受到计算负担的影响。

结果

我们提出了降维分析,即 Gene-MDR 分析,用于快速有效地进行高阶基因-基因相互作用分析。所提出的 Gene-MDR 方法由 MDR 的两步应用组成:基因内和基因间 MDR 分析。首先,通过对来自同一基因的多个 SNP 进行 MDR 分析,对每个基因的效果进行总结。其次,然后通过基因间 MDR 分析使用来自基因内 MDR 分析的总结基因效果来进行相互作用分析。我们将 Gene-MDR 方法应用于来自 Wellcome Trust Case Control Consortium (WTCCC) 的双相情感障碍 (BD) GWA 数据。结果表明,Gene-MDR 能够检测与 BD 相关的高阶基因-基因相互作用。

结论

通过将全基因组数据从 SNP 水平降低到基因水平,Gene-MDR 可以有效地识别高阶基因-基因相互作用。因此,Gene-MDR 可以为理解复杂疾病的病因学提供关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f159/3372457/478abc398f54/1471-2105-13-S9-S5-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验