Fekete Adam, Johnston Jamie, Delaney Kerry R
Department of Biology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada, and.
Department of Biology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom.
J Neurosci. 2014 Oct 15;34(42):14032-45. doi: 10.1523/JNEUROSCI.0905-14.2014.
Mitral cells express low-voltage activated Cav3.3 channels on their distal apical tuft dendrites (McKay et al., 2006; Johnston and Delaney, 2010). They also discharge Na(+)-dependent dendritic action potentials and release glutamate from these dendrites. Around resting membrane potentials, between -65 and -50 mV, Cav3.x channels are a primary determinant of cytoplasmic [Ca(2+)]. In this study using C57 mice, we present evidence that subthreshold Cav3.x-mediated Ca(2+) influx modulates action potential evoked transmitter release and directly drives asynchronous release from distal tuft dendrites. Presynaptic hyperpolarization and selective block of Cav3.x channels with Z941 (Tringham et al., 2012) reduce mitral-to-mitral EPSP amplitude, increase the coefficient of variation of EPSPs, and increase paired-pulse ratios, consistent with a reduced probability of transmitter release. Both hyperpolarization and Cav3.x channel blockade reduce steady-state cytoplasmic [Ca(2+)] in the tuft dendrite without reducing action potential evoked Ca(2+) influx, suggesting that background [Ca(2+)] modulates evoked release. We demonstrate that Cav3.x-mediated Ca(2+) influx from even one mitral cell at membrane potentials between -65 and -50 mV is sufficient to produce feedback inhibition from periglomerular neurons. Deinactivation of Cav3.x channels by hyperpolarization increases T-type Ca(2+) influx upon repolarization and increases feedback inhibition to produce subthreshold modulation of the mitral-periglomerular reciprocal circuit.
二尖瓣细胞在其远端顶端簇状树突上表达低电压激活的Cav3.3通道(麦凯等人,2006年;约翰斯顿和德莱尼,2010年)。它们还会产生依赖钠离子的树突动作电位,并从这些树突释放谷氨酸。在静息膜电位(-65至-50毫伏)附近,Cav3.x通道是细胞质中钙离子浓度的主要决定因素。在这项使用C57小鼠的研究中,我们提供证据表明,阈下Cav3.x介导的钙离子内流调节动作电位诱发的递质释放,并直接驱动远端簇状树突的异步释放。突触前超极化以及用Z941(特林厄姆等人,2012年)选择性阻断Cav3.x通道会降低二尖瓣到二尖瓣的兴奋性突触后电位幅度,增加兴奋性突触后电位的变异系数,并增加配对脉冲比率,这与递质释放概率降低一致。超极化和Cav3.x通道阻断都会降低簇状树突中的稳态细胞质钙离子浓度,而不会减少动作电位诱发的钙离子内流,这表明背景钙离子浓度调节诱发释放。我们证明,在-65至-50毫伏的膜电位下,即使一个二尖瓣细胞的Cav3.x介导的钙离子内流也足以产生来自球周神经元的反馈抑制。超极化使Cav3.x通道去失活,会在复极化时增加T型钙离子内流,并增加反馈抑制,从而对二尖瓣-球周相互回路产生阈下调节。