Suppr超能文献

单一机制可解释2型糖尿病肥胖患者脂肪细胞中全网络胰岛素抵抗现象。

A single mechanism can explain network-wide insulin resistance in adipocytes from obese patients with type 2 diabetes.

作者信息

Nyman Elin, Rajan Meenu Rohini, Fagerholm Siri, Brännmark Cecilia, Cedersund Gunnar, Strålfors Peter

机构信息

From the Department of Clinical and Experimental Medicine and.

From the Department of Clinical and Experimental Medicine and the Department of Biomedical Engineering, Linköping University, SE58185 Linköping, Sweden.

出版信息

J Biol Chem. 2014 Nov 28;289(48):33215-30. doi: 10.1074/jbc.M114.608927. Epub 2014 Oct 15.

Abstract

The response to insulin is impaired in type 2 diabetes. Much information is available about insulin signaling, but understanding of the cellular mechanisms causing impaired signaling and insulin resistance is hampered by fragmented data, mainly obtained from different cell lines and animals. We have collected quantitative and systems-wide dynamic data on insulin signaling in primary adipocytes and compared cells isolated from healthy and diabetic individuals. Mathematical modeling and experimental verification identified mechanisms of insulin control of the MAPKs ERK1/2. We found that in human adipocytes, insulin stimulates phosphorylation of the ribosomal protein S6 and hence protein synthesis about equally via ERK1/2 and mTORC1. Using mathematical modeling, we examined the signaling network as a whole and show that a single mechanism can explain the insulin resistance of type 2 diabetes throughout the network, involving signaling both through IRS1, PKB, and mTOR and via ERK1/2 to the nuclear transcription factor Elk1. The most important part of the insulin resistance mechanism is an attenuated feedback from the protein kinase mTORC1 to IRS1, which spreads signal attenuation to all parts of the insulin signaling network. Experimental inhibition of mTORC1 using rapamycin in adipocytes from non-diabetic individuals induced and thus confirmed the predicted network-wide insulin resistance.

摘要

2型糖尿病患者对胰岛素的反应受损。关于胰岛素信号传导已有很多信息,但由于主要从不同细胞系和动物获得的碎片化数据,对导致信号传导受损和胰岛素抵抗的细胞机制的理解受到阻碍。我们收集了原代脂肪细胞中胰岛素信号传导的定量和全系统动态数据,并比较了从健康个体和糖尿病个体分离出的细胞。数学建模和实验验证确定了丝裂原活化蛋白激酶ERK1/2的胰岛素控制机制。我们发现,在人类脂肪细胞中,胰岛素通过ERK1/2和mTORC1同等程度地刺激核糖体蛋白S6的磷酸化,从而促进蛋白质合成。通过数学建模,我们对整个信号网络进行了研究,结果表明,单一机制可以解释2型糖尿病在整个网络中的胰岛素抵抗,该机制涉及通过IRS1、蛋白激酶B(PKB)和mTOR以及通过ERK1/2至核转录因子Elk1的信号传导。胰岛素抵抗机制的最重要部分是蛋白激酶mTORC1对IRS1的反馈减弱,这将信号衰减扩散到胰岛素信号网络的所有部分。在非糖尿病个体的脂肪细胞中使用雷帕霉素对mTORC1进行实验性抑制诱导并因此证实了预测的全网络胰岛素抵抗。

相似文献

1
A single mechanism can explain network-wide insulin resistance in adipocytes from obese patients with type 2 diabetes.
J Biol Chem. 2014 Nov 28;289(48):33215-30. doi: 10.1074/jbc.M114.608927. Epub 2014 Oct 15.
3
Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes.
J Biol Chem. 2013 Apr 5;288(14):9867-9880. doi: 10.1074/jbc.M112.432062. Epub 2013 Feb 11.
4
Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes.
Mol Med. 2010 Jul-Aug;16(7-8):235-46. doi: 10.2119/molmed.2010.00023. Epub 2010 Mar 26.
6
Cross-talks via mTORC2 can explain enhanced activation in response to insulin in diabetic patients.
Biosci Rep. 2017 Jan 24;37(1). doi: 10.1042/BSR20160514. Print 2017 Feb 28.
8
Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes.
FASEB J. 2007 Nov;21(13):3696-704. doi: 10.1096/fj.07-8173com. Epub 2007 Jun 15.

引用本文的文献

2
A multi-scale digital twin for adiposity-driven insulin resistance in humans: diet and drug effects.
Diabetol Metab Syndr. 2023 Dec 4;15(1):250. doi: 10.1186/s13098-023-01223-6.
3
A comprehensive mechanistic model of adipocyte signaling with layers of confidence.
NPJ Syst Biol Appl. 2023 Jun 7;9(1):24. doi: 10.1038/s41540-023-00282-9.
4
Insulin Signaling Pathway Model in Adipocyte Cells.
Curr Pharm Des. 2023;29(1):37-47. doi: 10.2174/1381612829666221214122802.
5
Digital twin predicting diet response before and after long-term fasting.
PLoS Comput Biol. 2022 Sep 12;18(9):e1010469. doi: 10.1371/journal.pcbi.1010469. eCollection 2022 Sep.
6
A systems biology analysis of lipolysis and fatty acid release from adipocytes in vitro and from adipose tissue in vivo.
PLoS One. 2021 Dec 31;16(12):e0261681. doi: 10.1371/journal.pone.0261681. eCollection 2021.
7
Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1.
PLoS Comput Biol. 2021 Sep 16;17(9):e1008513. doi: 10.1371/journal.pcbi.1008513. eCollection 2021 Sep.
8
An Updated Organ-Based Multi-Level Model for Glucose Homeostasis: Organ Distributions, Timing, and Impact of Blood Flow.
Front Physiol. 2021 Jun 1;12:619254. doi: 10.3389/fphys.2021.619254. eCollection 2021.
9
Hybrid modelling for stroke care: Review and suggestions of new approaches for risk assessment and simulation of scenarios.
Neuroimage Clin. 2021;31:102694. doi: 10.1016/j.nicl.2021.102694. Epub 2021 May 7.
10
Finding new edges: systems approaches to MTOR signaling.
Biochem Soc Trans. 2021 Feb 26;49(1):41-54. doi: 10.1042/BST20190730.

本文引用的文献

1
Data-driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states.
Mol Syst Biol. 2014 Jan 30;10(1):718. doi: 10.1002/msb.134708. Print 2014.
3
A new mathematical approach for qualitative modeling of the insulin-TOR-MAPK network.
Front Physiol. 2013 Sep 12;4:245. doi: 10.3389/fphys.2013.00245. eCollection 2013.
4
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output.
Nat Cell Biol. 2013 Jun;15(6):555-64. doi: 10.1038/ncb2763.
6
Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes.
J Biol Chem. 2013 Apr 5;288(14):9867-9880. doi: 10.1074/jbc.M112.432062. Epub 2013 Feb 11.
7
How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches.
Front Physiol. 2012 Dec 21;3:475. doi: 10.3389/fphys.2012.00475. eCollection 2012.
10
Conclusions via unique predictions obtained despite unidentifiability--new definitions and a general method.
FEBS J. 2012 Sep;279(18):3513-27. doi: 10.1111/j.1742-4658.2012.08725.x. Epub 2012 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验