Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
PLoS Comput Biol. 2021 Sep 16;17(9):e1008513. doi: 10.1371/journal.pcbi.1008513. eCollection 2021 Sep.
The PI3K/MTOR signalling network regulates a broad array of critical cellular processes, including cell growth, metabolism and autophagy. The mechanistic target of rapamycin (MTOR) kinase functions as a core catalytic subunit in two physically and functionally distinct complexes mTORC1 and mTORC2, which also share other common components including MLST8 (also known as GβL) and DEPTOR. Despite intensive research, how mTORC1 and 2 assembly and activity are coordinated, and how they are functionally linked remain to be fully characterized. This is due in part to the complex network wiring, featuring multiple feedback loops and intricate post-translational modifications. Here, we integrate predictive network modelling, in vitro experiments and -omics data analysis to elucidate the emergent dynamic behaviour of the PI3K/MTOR network. We construct new mechanistic models that encapsulate critical mechanistic details, including mTORC1/2 coordination by MLST8 (de)ubiquitination and the Akt-to-mTORC2 positive feedback loop. Model simulations validated by experimental studies revealed a previously unknown biphasic, threshold-gated dependence of mTORC1 activity on the key mTORC2 subunit SIN1, which is robust against cell-to-cell variation in protein expression. In addition, our integrative analysis demonstrates that ubiquitination of MLST8, which is reversed by OTUD7B, is regulated by IRS1/2. Our results further support the essential role of MLST8 in enabling both mTORC1 and 2's activity and suggest MLST8 as a viable therapeutic target in breast cancer. Overall, our study reports a new mechanistic model of PI3K/MTOR signalling incorporating MLST8-mediated mTORC1/2 formation and unveils a novel regulatory linkage between mTORC1 and mTORC2.
PI3K/MTOR 信号网络调节广泛的关键细胞过程,包括细胞生长、代谢和自噬。雷帕霉素(mTOR)激酶作为两种物理和功能上不同的复合物 mTORC1 和 mTORC2 的核心催化亚基,其功能作为核心催化亚基,还共享其他共同的组成部分,包括 MLST8(也称为 GβL)和 DEPTOR。尽管进行了广泛的研究,但 mTORC1 和 2 的组装和活性如何协调以及它们如何在功能上联系仍然需要充分描述。这部分是由于复杂的网络布线,具有多个反馈回路和复杂的翻译后修饰。在这里,我们整合预测网络建模、体外实验和组学数据分析,以阐明 PI3K/MTOR 网络的新兴动态行为。我们构建了新的机制模型,这些模型封装了关键的机制细节,包括 MLST8(去)泛素化和 Akt-to-mTORC2 正反馈环对 mTORC1/2 的协调。通过实验研究验证的模型模拟揭示了 mTORC1 活性对关键 mTORC2 亚基 SIN1 的以前未知的双相、门控依赖性,该依赖性对蛋白质表达的细胞间变化具有稳健性。此外,我们的综合分析表明,MLST8 的泛素化,由 OTUD7B 逆转,受 IRS1/2 调节。我们的结果进一步支持 MLST8 在使 mTORC1 和 2 的活性成为可能的重要作用,并表明 MLST8 是乳腺癌中可行的治疗靶标。总体而言,我们的研究报告了一种新的 PI3K/MTOR 信号机制模型,该模型纳入了 MLST8 介导的 mTORC1/2 形成,并揭示了 mTORC1 和 mTORC2 之间新的调节联系。