Suppr超能文献

四阶张量的完整不变量集:来自三元四次式的HARDI的12项任务。

Complete set of invariants of a 4th order tensor: the 12 tasks of HARDI from ternary quartics.

作者信息

Papadopoulo Théo, Ghosh Aurobrata, Deriche Rachid

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 3):233-40. doi: 10.1007/978-3-319-10443-0_30.

Abstract

Invariants play a crucial role in Diffusion MRI. In DTI (2nd order tensors), invariant scalars (FA, MD) have been successfully used in clinical applications. But DTI has limitations and HARDI models (e.g. 4th order tensors) have been proposed instead. These, however, lack invariant features and computing them systematically is challenging. We present a simple and systematic method to compute a functionally complete set of invariants of a non-negative 3D 4th order tensor with respect to SO3. Intuitively, this transforms the tensor's non-unique ternary quartic (TQ) decomposition (from Hilbert's theorem) to a unique canonical representation independent of orientation - the invariants. The method consists of two steps. In the first, we reduce the 18 degrees-of-freedom (DOF) of a TQ representation by 3-DOFs via an orthogonal transformation. This transformation is designed to enhance a rotation-invariant property of choice of the 3D 4th order tensor. In the second, we further reduce 3-DOFs via a 3D rotation transformation of coordinates to arrive at a canonical set of invariants to SO3 of the tensor. The resulting invariants are, by construction, (i) functionally complete, (ii) functionally irreducible (if desired), (iii) computationally efficient and (iv) reversible (mappable to the TQ coefficients or shape); which is the novelty of our contribution in comparison to prior work. Results from synthetic and real data experiments validate the method and indicate its importance.

摘要

不变量在扩散磁共振成像中起着至关重要的作用。在扩散张量成像(DTI,二阶张量)中,不变标量(如分数各向异性(FA)、平均扩散率(MD))已成功应用于临床。但DTI存在局限性,因此有人提出了高角分辨率扩散成像(HARDI)模型(如四阶张量)。然而,这些模型缺乏不变特征,系统地计算它们具有挑战性。我们提出了一种简单且系统的方法,用于计算相对于特殊正交群SO3的非负三维四阶张量的一组功能完备的不变量。直观地说,这将张量的非唯一三元四次(TQ)分解(源自希尔伯特定理)转换为与方向无关的唯一规范表示——不变量。该方法包括两个步骤。第一步,我们通过正交变换将TQ表示的18个自由度(DOF)减少3个自由度。此变换旨在增强三维四阶张量选择的旋转不变性。第二步,我们通过坐标的三维旋转变换进一步减少3个自由度,以得到张量相对于SO3的一组规范不变量。通过构造,所得不变量具有以下特点:(i)功能完备;(ii)功能不可约(如果需要);(iii)计算效率高;(iv)可逆(可映射到TQ系数或形状);与先前工作相比,这是我们贡献的新颖之处。合成数据和真实数据实验的结果验证了该方法并表明了其重要性。

相似文献

4
Brain connectivity using geodesics in HARDI.利用HARDI中的测地线进行脑连接性研究。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):482-9. doi: 10.1007/978-3-642-04271-3_59.
6
The effects of noise over the complete space of diffusion tensor shape.噪声对扩散张量形态全空间的影响。
Med Image Anal. 2014 Jan;18(1):197-210. doi: 10.1016/j.media.2013.10.009. Epub 2013 Oct 28.
7
A Riemannian framework for orientation distribution function computing.一种用于方向分布函数计算的黎曼框架。
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):911-8. doi: 10.1007/978-3-642-04268-3_112.
8
Tractography via the ensemble average propagator in diffusion MRI.扩散磁共振成像中基于总体平均传播子的纤维束成像
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):339-46. doi: 10.1007/978-3-642-33418-4_42.

引用本文的文献

1
Using diffusion MRI to discriminate areas of cortical grey matter.利用弥散磁共振成像区分皮质灰质区域。
Neuroimage. 2018 Nov 15;182:456-468. doi: 10.1016/j.neuroimage.2017.12.046. Epub 2017 Dec 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验