Gauriau Romane, Cuingnet Rémi, Lesage David, Bloch Isabelle
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):337-44. doi: 10.1007/978-3-319-10443-0_43.
We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize global-to-local cascades of regression forests [1] to multiple organs. A first regressor encodes global relationships between organs. Subsequent regressors refine the localization of each organ locally and independently for improved accuracy. We introduce confidence maps, which incorporate information about both the regression vote distribution and the organ shape through probabilistic atlases. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes thanks to the shape prior. We demonstrate the robustness and accuracy of our approach through a quantitative evaluation on a large database of 130 CT volumes.
我们提出了一种在医学图像中对多个器官进行快速、准确且稳健定位的方法。我们将回归森林的全局到局部级联[1]推广到多个器官。第一个回归器对器官之间的全局关系进行编码。后续的回归器在局部独立地细化每个器官的定位,以提高准确性。我们引入了置信度图,它通过概率图谱融合了关于回归投票分布和器官形状的信息。它们在级联本身中使用,以便更好地为第二组回归器选择测试体素,并由于形状先验而提供比传统边界框更丰富的信息。我们通过对一个包含130个CT体积的大型数据库进行定量评估,证明了我们方法的稳健性和准确性。