Suppr超能文献

基于多期 CT 的多器官腹部分割的统计 4D 图谱

Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT.

机构信息

Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA.

出版信息

Med Image Anal. 2012 May;16(4):904-14. doi: 10.1016/j.media.2012.02.001. Epub 2012 Feb 11.

Abstract

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D convolution using population training information of contrast-enhanced liver, spleen and kidneys was applied to multiphase data to initialize the 4D graph and adapt to patient-specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance, enhancement, shape and location on organ segmentation. All four abdominal organs were segmented robustly and accurately with volume overlaps over 93.6% and average surface distances below 1.1mm.

摘要

医学图像的解读得益于解剖学和生理学先验知识,以优化计算机辅助诊断应用。诊断还依赖于对多个器官的综合分析和软组织的定量测量。本文提出了一种针对医学图像数据的自动方法,使用图割对 4D CT 数据进行同时分割四个腹部器官。在两个阶段采集了增强 CT 扫描:非对比和门静脉期。通过非线性配准对患者内数据进行空间归一化。然后使用增强肝脏、脾脏和肾脏的人群训练信息对多期数据进行 4D 卷积,以初始化 4D 图并适应患者特定数据。将 CT 增强信息和形状约束(来自 Parzen 窗口)以及位置约束(来自概率图谱)输入到 4D 图的新公式中。对比结果证明了外观、增强、形状和位置对器官分割的影响。四个腹部器官都被稳健而准确地分割,体积重叠超过 93.6%,平均表面距离低于 1.1mm。

相似文献

1
Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT.
Med Image Anal. 2012 May;16(4):904-14. doi: 10.1016/j.media.2012.02.001. Epub 2012 Feb 11.
2
Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):89-96. doi: 10.1007/978-3-642-15711-0_12.
3
Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
Med Image Anal. 2015 Dec;26(1):1-18. doi: 10.1016/j.media.2015.06.009. Epub 2015 Jul 4.
4
Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):165-72. doi: 10.1007/978-3-642-40763-5_21.
5
Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):275-82. doi: 10.1007/978-3-642-40760-4_35.
8
Granular computing in model based abdominal organs detection.
Comput Med Imaging Graph. 2015 Dec;46 Pt 2:121-30. doi: 10.1016/j.compmedimag.2015.03.002. Epub 2015 Mar 10.
9
Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):502-9. doi: 10.1007/978-3-540-85988-8_60.
10
Segmentation of liver and spleen based on computational anatomy models.
Comput Biol Med. 2015 Dec 1;67:146-60. doi: 10.1016/j.compbiomed.2015.10.007. Epub 2015 Oct 28.

引用本文的文献

1
Machine learning techniques for CT imaging diagnosis of novel coronavirus pneumonia: a review.
Neural Comput Appl. 2022 Sep 19:1-19. doi: 10.1007/s00521-022-07709-0.
6
CT-based multi-organ segmentation using a 3D self-attention U-net network for pancreatic radiotherapy.
Med Phys. 2020 Sep;47(9):4316-4324. doi: 10.1002/mp.14386. Epub 2020 Aug 2.
7
LinSEM: Linearizing segmentation evaluation metrics for medical images.
Med Image Anal. 2020 Feb;60:101601. doi: 10.1016/j.media.2019.101601. Epub 2019 Nov 9.
8
Automated segmentation of the injured kidney due to abdominal trauma.
J Med Syst. 2019 Nov 24;44(1):5. doi: 10.1007/s10916-019-1476-1.
10
Family of boundary overlap metrics for the evaluation of medical image segmentation.
J Med Imaging (Bellingham). 2018 Jan;5(1):015006. doi: 10.1117/1.JMI.5.1.015006. Epub 2018 Feb 19.

本文引用的文献

1
Entangled decision forests and their application for semantic segmentation of CT images.
Inf Process Med Imaging. 2011;22:184-96. doi: 10.1007/978-3-642-22092-0_16.
2
Color Image Segmentation in a Quaternion Framework.
Energy Minimization Methods Comput Vis Pattern Recognit. 2009 Jan 1;5681(2009):401-414. doi: 10.1007/978-3-642-03641-5_30.
3
Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):73-80. doi: 10.1007/978-3-642-15711-0_10.
4
ANATOMICAL VARIABILITY OF ORGANS VIA PRINCIPAL FACTOR ANALYSIS FROM THE CONSTRUCTION OF AN ABDOMINAL PROBABILISTIC ATLAS.
Proc IEEE Int Symp Biomed Imaging. 2009;2009:682-685. doi: 10.1109/isbi.2009.5193139.
5
Left ventricle segmentation via graph cut distribution matching.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):901-9. doi: 10.1007/978-3-642-04271-3_109.
6
Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):584-91. doi: 10.1007/978-3-642-04271-3_71.
7
Liver segmentation using automatically defined patient specific B-spline surface models.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):43-50. doi: 10.1007/978-3-642-04271-3_6.
8
A generic probabilistic active shape model for organ segmentation.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):26-33. doi: 10.1007/978-3-642-04271-3_4.
10
Graph-based variability estimation in single-trial event-related neural responses.
IEEE Trans Biomed Eng. 2010 May;57(5):1051-61. doi: 10.1109/TBME.2009.2037139. Epub 2010 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验