Suppr超能文献

基于多期 CT 的多器官腹部分割的统计 4D 图谱

Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT.

机构信息

Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA.

出版信息

Med Image Anal. 2012 May;16(4):904-14. doi: 10.1016/j.media.2012.02.001. Epub 2012 Feb 11.

Abstract

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D convolution using population training information of contrast-enhanced liver, spleen and kidneys was applied to multiphase data to initialize the 4D graph and adapt to patient-specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance, enhancement, shape and location on organ segmentation. All four abdominal organs were segmented robustly and accurately with volume overlaps over 93.6% and average surface distances below 1.1mm.

摘要

医学图像的解读得益于解剖学和生理学先验知识,以优化计算机辅助诊断应用。诊断还依赖于对多个器官的综合分析和软组织的定量测量。本文提出了一种针对医学图像数据的自动方法,使用图割对 4D CT 数据进行同时分割四个腹部器官。在两个阶段采集了增强 CT 扫描:非对比和门静脉期。通过非线性配准对患者内数据进行空间归一化。然后使用增强肝脏、脾脏和肾脏的人群训练信息对多期数据进行 4D 卷积,以初始化 4D 图并适应患者特定数据。将 CT 增强信息和形状约束(来自 Parzen 窗口)以及位置约束(来自概率图谱)输入到 4D 图的新公式中。对比结果证明了外观、增强、形状和位置对器官分割的影响。四个腹部器官都被稳健而准确地分割,体积重叠超过 93.6%,平均表面距离低于 1.1mm。

相似文献

8
Granular computing in model based abdominal organs detection.基于模型的腹部器官检测中的粒计算。
Comput Med Imaging Graph. 2015 Dec;46 Pt 2:121-30. doi: 10.1016/j.compmedimag.2015.03.002. Epub 2015 Mar 10.
10
Segmentation of liver and spleen based on computational anatomy models.基于计算解剖模型的肝脏和脾脏分割
Comput Biol Med. 2015 Dec 1;67:146-60. doi: 10.1016/j.compbiomed.2015.10.007. Epub 2015 Oct 28.

引用本文的文献

7
LinSEM: Linearizing segmentation evaluation metrics for medical images.LinSEM:医学图像分割评估指标的线性化。
Med Image Anal. 2020 Feb;60:101601. doi: 10.1016/j.media.2019.101601. Epub 2019 Nov 9.
10
Family of boundary overlap metrics for the evaluation of medical image segmentation.用于医学图像分割评估的边界重叠度量族
J Med Imaging (Bellingham). 2018 Jan;5(1):015006. doi: 10.1117/1.JMI.5.1.015006. Epub 2018 Feb 19.

本文引用的文献

2
Color Image Segmentation in a Quaternion Framework.四元数框架下的彩色图像分割
Energy Minimization Methods Comput Vis Pattern Recognit. 2009 Jan 1;5681(2009):401-414. doi: 10.1007/978-3-642-03641-5_30.
5
Left ventricle segmentation via graph cut distribution matching.基于图割分布匹配的左心室分割
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):901-9. doi: 10.1007/978-3-642-04271-3_109.
8
A generic probabilistic active shape model for organ segmentation.一种用于器官分割的通用概率主动形状模型。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):26-33. doi: 10.1007/978-3-642-04271-3_4.
10
Graph-based variability estimation in single-trial event-related neural responses.基于图的单试事件相关神经反应变异性估计。
IEEE Trans Biomed Eng. 2010 May;57(5):1051-61. doi: 10.1109/TBME.2009.2037139. Epub 2010 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验