Philips Research MediSys, 33 rue de Verdun, Suresnes Cedex 92156, France; Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, 46 Rue Barrault, Paris 75013, France.
Philips Research MediSys, 33 rue de Verdun, Suresnes Cedex 92156, France.
Med Image Anal. 2015 Jul;23(1):70-83. doi: 10.1016/j.media.2015.04.007. Epub 2015 Apr 17.
We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize the global-to-local cascade of regression random forest to multiple organs. A first regressor encodes the global relationships between organs, learning simultaneously all organs parameters. Then subsequent regressors refine the localization of each organ locally and independently for improved accuracy. By combining the regression vote distribution and the organ shape prior (through probabilistic atlas representation) we compute confidence maps that are organ-dedicated probability maps. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes result thanks to the shape prior. We propose an extensive study of the different learning and testing parameters, showing both their robustness to reasonable perturbations and their influence on the final algorithm accuracy. Finally we demonstrate the robustness and accuracy of our approach by evaluating the localization of six abdominal organs (liver, two kidneys, spleen, gallbladder and stomach) on a large and diverse database of 130 CT volumes. Moreover, the comparison of our results with two existing methods shows significant improvements brought by our approach and our deep understanding and optimization of the parameters.
我们提出了一种快速、准确和稳健的医学图像中多个器官定位方法。我们将全局到局部的回归随机森林级联推广到多个器官。第一个回归器对器官之间的全局关系进行编码,同时学习所有器官的参数。然后,后续的回归器对每个器官进行局部和独立的精确定位,以提高准确性。通过结合回归投票分布和器官形状先验(通过概率图谱表示),我们计算出器官专用的置信度图,即概率图谱。它们在级联本身中使用,以更好地为第二组回归器选择测试体素,并通过形状先验提供比经典边界框结果更丰富的信息。我们对不同的学习和测试参数进行了广泛的研究,展示了它们对合理扰动的鲁棒性及其对最终算法准确性的影响。最后,我们通过在一个包含 130 个 CT 容积的大型和多样化数据库上评估六个腹部器官(肝脏、两个肾脏、脾脏、胆囊和胃)的定位,证明了我们方法的稳健性和准确性。此外,我们的结果与两种现有的方法进行比较,显示了我们的方法带来的显著改进,以及我们对参数的深入理解和优化。