Mortazavi Daryoush, Kouzani Abbas, Kalani Mahshid
Opt Express. 2014 Aug 11;22(16):18889-903. doi: 10.1364/OE.22.018889.
Applications of LSPR nano-particles in various areas of solar cells, LSPR biosensors, and SERS biosensors, based on interaction of light with noble metal nano-particles is increasing. Therefore, design and nano-fabrication of the LSPR devices is a key step in developing such applications. Design of nano-structures with desirable spectral properties using numerical techniques such as finite difference time domain (FDTD) is the first step in this work. A new structure called nano-sinusoid, satisfying the some desirable LSPR characteristics, is designed and simulated using the FDTD method. In the next stage, analytical method of electro static eigen mode method is used to validate the simulation results. The, nano-fabrications method of electron beam lithography (EBL) is implemented to fabricate the proposed profile with high precision. Finally, atomic force microscopy (AFM) is used to investigate the shape of the fabricated nano-particles, and the dark field microscopy is employed to demonstrate the particular spectral characteristics of the proposed nano-sinusoids.
基于光与贵金属纳米粒子相互作用的局域表面等离子体共振(LSPR)纳米粒子在太阳能电池、LSPR生物传感器和表面增强拉曼散射(SERS)生物传感器等各个领域的应用正在增加。因此,LSPR器件的设计和纳米制造是开发此类应用的关键步骤。使用诸如时域有限差分(FDTD)等数值技术设计具有理想光谱特性的纳米结构是这项工作的第一步。一种满足某些理想LSPR特性的名为纳米正弦曲线的新结构被设计出来,并使用FDTD方法进行了模拟。在下一阶段,使用静电本征模方法的解析方法来验证模拟结果。然后,实施电子束光刻(EBL)的纳米制造方法以高精度制造所提出的轮廓。最后,使用原子力显微镜(AFM)研究制造的纳米粒子的形状,并采用暗场显微镜来展示所提出的纳米正弦曲线的特定光谱特性。