Liu Jianpeng, Zhang Sichao, Ma Yaqi, Shao Jinhai, Lu Bingrui, Chen Yifang
Appl Opt. 2015 Mar 20;54(9):2537-42. doi: 10.1364/AO.54.002537.
We report our work on the development of subwavelength gold pillar arrays as local surface plasmonic (LSP) resonators for sensor applications. These arrays are fabricated by electron beam lithography combined with electroplating. The conical shape, instead of flat one, on the top of Au pillars, induced by uneven current density in the plating, may affect the LSP resonance (LSPR). This paper aims to carry out a systematic study of LSPR behavior in nanopillar arrays with both flat and conical shapes on the top, trying to prove the feasibility of the developed nanoprocess. Both numerical simulations by the finite-difference time-domain (FDTD) method and experimental characterization on fabricated LSP resonators for reflectance spectra were carried out. Our experiments indicate that the fabricated nanopillar arrays in Au demonstrate the promising capability of refractive index sensing with sensitivity of 270 nm/refractive index unit. FDTD simulation of electric field density in the gap between pillars reveals the correlation between the resonant absorption of the incident light and the standing waves of localized surface plasmon polaritons in the gaps of the pillar array, despite the conical shape of the pillars. Moreover, it was discovered that the resonant absorption becomes stronger when the light incident angle is increased. The proposed nanoprocess for pillar arrays should possess great prospects for manufacturing Au pillars with high aspect ratio for achieving higher sensitivity at an economical cost.
我们报告了关于将亚波长金柱阵列开发为用于传感器应用的局域表面等离子体(LSP)谐振器的工作。这些阵列是通过电子束光刻结合电镀制造的。电镀过程中电流密度不均匀导致金柱顶部呈锥形而非平面形状,这可能会影响LSP共振(LSPR)。本文旨在对顶部具有平面和锥形形状的纳米柱阵列中的LSPR行为进行系统研究,试图证明所开发的纳米工艺的可行性。我们通过时域有限差分(FDTD)方法进行了数值模拟,并对制造的用于反射光谱的LSP谐振器进行了实验表征。我们的实验表明,所制造的金纳米柱阵列具有折射率传感的潜力,灵敏度为270 nm/折射率单位。对柱间间隙中的电场密度进行的FDTD模拟揭示了入射光的共振吸收与柱阵列间隙中局域表面等离子体激元的驻波之间的相关性,尽管柱体呈锥形。此外,还发现当光入射角增加时,共振吸收会变强。所提出的柱阵列纳米工艺在以经济成本制造高纵横比的金柱以实现更高灵敏度方面应具有广阔前景。