Schiefer Christoph, Ellegast Rolf P, Hermanns Ingo, Kraus Thomas, Ochsmann Elke, Larue Christian, Plamondon André
J Biomech Eng. 2014 Dec;136(12):121008. doi: 10.1115/1.4028822.
Inertial measurement units (IMU) are gaining increasing importance for human motion tracking in a large variety of applications. IMUs consist of gyroscopes, accelerometers, and magnetometers which provide angular rate, acceleration, and magnetic field information, respectively. In scenarios with a permanently distorted magnetic field, orientation estimation algorithms revert to using only angular rate and acceleration information. The result is an increasing drift error of the heading information. This article describes a method to compensate the orientation drift of IMUs using angular rate and acceleration readings in a quaternion-based algorithm. Zero points (ZP) were introduced, which provide additional heading and gyroscope bias information and were combined with bidirectional orientation computation. The necessary frequency of ZPs to achieve an acceptable error level is derived in this article. In a laboratory environment the method and the effect of varying interval length between ZPs was evaluated. Eight subjects were equipped with seven IMUs at trunk, head and upper extremities. They performed a predefined course of box handling for 40 min at different motion speeds and ranges of motion. The orientation estimation was compared to an optical motion tracking system. The resulting mean root mean squared error (RMSE) of all measurements ranged from 1.7 deg to 7.6 deg (roll and pitch) and from 3.5 deg to 15.0 deg (heading) depending on the measured segment, at a mean interval-length of 1.1 min between two ZPs without magnetometer usage. The 95% limits of agreement (LOA) ranged in best case from -2.9 deg to 3.6 deg at the hip roll angle and in worst case from -19.3 deg to 18.9 deg at the forearm heading angle. This study demonstrates that combining ZPs and bidirectional computation can reduce orientation error of IMUs in environments with magnetic field distortion.
惯性测量单元(IMU)在各种人类运动跟踪应用中越来越重要。IMU由陀螺仪、加速度计和磁力计组成,它们分别提供角速率、加速度和磁场信息。在磁场永久失真的场景中,方向估计算法仅使用角速率和加速度信息。结果是航向信息的漂移误差不断增加。本文描述了一种在基于四元数的算法中使用角速率和加速度读数来补偿IMU方向漂移的方法。引入了零点(ZP),它提供了额外的航向和陀螺仪偏差信息,并与双向方向计算相结合。本文推导了达到可接受误差水平所需的ZP频率。在实验室环境中,评估了ZP之间不同间隔长度的方法及其效果。八名受试者在躯干、头部和上肢配备了七个IMU。他们以不同的运动速度和运动范围进行了40分钟的预定义搬箱过程。将方向估计与光学运动跟踪系统进行比较。在不使用磁力计的情况下,两个ZP之间的平均间隔长度为1.1分钟,所有测量结果的均方根误差(RMSE)根据测量段的不同,在滚动和俯仰方面为1.7度至7.6度,在航向方面为3.5度至15.0度。95%一致性界限(LOA)在最佳情况下,髋部滚动角为-2.9度至3.6度,在最坏情况下,前臂航向角为-19.3度至18.9度。这项度。这项研究表明,在磁场失真的环境中,结合ZP和双向计算可以减少IMU的方向误差。