Suppr超能文献

在一个早期富集的轻度认知障碍样本中,用于预测转化和认知衰退的认知标志物和生物标志物的不同强度。

Varying strength of cognitive markers and biomarkers to predict conversion and cognitive decline in an early-stage-enriched mild cognitive impairment sample.

作者信息

Egli Simone C, Hirni Daniela I, Taylor Kirsten I, Berres Manfred, Regeniter Axel, Gass Achim, Monsch Andreas U, Sollberger Marc

机构信息

Memory Clinic, University Center for Medicine of Aging Basel, Felix Platter-Hospital, Basel, Switzerland.

Memory Clinic, University Center for Medicine of Aging Basel, Felix Platter-Hospital, Basel, Switzerland Centre for Speech, Language and the Brain, Department of Experimental Psychology, Cambridge, UK.

出版信息

J Alzheimers Dis. 2015;44(2):625-33. doi: 10.3233/JAD-141716.

Abstract

BACKGROUND

Several cognitive, neuroimaging, and cerebrospinal fluid (CSF) markers predict conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) dementia. However, predictors might be more or less powerful depending on the characteristics of the MCI sample.

OBJECTIVE

To investigate which cognitive markers and biomarkers predict conversion to AD dementia and course of cognitive functioning in a MCI sample with a high proportion of early-stage MCI patients.

METHODS

Variables known to predict progression in MCI patients and hypothesized to predict progression in early-stage MCI patients were selected. Cognitive (long-delay free recall, regional primacy score), imaging (hippocampal and entorhinal cortex volumes, fornix fractional anisotropy), and CSF (Aβ1-42/t-tau, Aβ1-42) variables from 36 MCI patients were analyzed with Cox regression and mixed-effect models to determine their individual and combined abilities to predict time to conversion to AD dementia and course of global cognitive functioning, respectively.

RESULTS

Those variables hypothesized to predict the course of early-stage MCI patients were most predictive for MCI progression. Specifically, regional primacy score (a measure of word-list position learning) most consistently predicted conversion to AD dementia and course of cognitive functioning. Both the prediction of conversion and course of cognitive functioning were maximized by including CSF Aβ1-42 and fornix integrity biomarkers, respectively, indicating the complementary information carried by cognitive variables and biomarkers.

CONCLUSION

Predictors of MCI progression need to be interpreted in light of the characteristics of the respective MCI sample. Future studies should aim to compare predictive strengths of markers between early-stage and late-stage MCI patients.

摘要

背景

多种认知、神经影像学和脑脊液(CSF)标志物可预测轻度认知障碍(MCI)向阿尔茨海默病(AD)痴呆的转化。然而,根据MCI样本的特征,预测指标的效力可能会有所不同。

目的

在早期MCI患者比例较高的MCI样本中,研究哪些认知标志物和生物标志物可预测向AD痴呆的转化以及认知功能的进程。

方法

选择已知可预测MCI患者病情进展且假设可预测早期MCI患者病情进展的变量。对36例MCI患者的认知(长时延迟自由回忆、区域首位度得分)、影像学(海马体和内嗅皮质体积、穹窿部各向异性分数)和脑脊液(Aβ1-42/t-tau、Aβ1-42)变量进行Cox回归和混合效应模型分析,以分别确定它们预测转化为AD痴呆的时间和整体认知功能进程的个体能力及综合能力。

结果

那些假设可预测早期MCI患者病程的变量对MCI进展的预测性最强。具体而言,区域首位度得分(一种单词列表位置学习的测量指标)最一致地预测了向AD痴呆的转化和认知功能进程。分别纳入脑脊液Aβ1-42和穹窿部完整性生物标志物可使转化预测和认知功能进程预测达到最大化,这表明认知变量和生物标志物携带了互补信息。

结论

MCI进展的预测指标需要根据各自MCI样本的特征来解读。未来的研究应旨在比较早期和晚期MCI患者之间标志物的预测强度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验