Suppr超能文献

体外营养物质运输与生物组织生长的多尺度分析。

A multiscale analysis of nutrient transport and biological tissue growth in vitro.

作者信息

O'Dea R D, Nelson M R, El Haj A J, Waters S L, Byrne H M

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK reuben.o'

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK and School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK.

出版信息

Math Med Biol. 2015 Sep;32(3):345-66. doi: 10.1093/imammb/dqu015. Epub 2014 Oct 15.

Abstract

In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

摘要

在本文中,我们考虑推导适用于描述生物组织生长的宏观方程,采用多尺度均匀化方法来明确考虑材料潜在微观结构及其演化对宏观动力学的影响。此类方法已被广泛用于研究多孔材料和多孔弹性材料;然而,生物组织的一个显著特征是其能够响应局部环境线索而持续重塑。在此,我们给出一个广泛适用于组织工程应用的模型的推导,该模型的特征在于组织培养系统中使用的多孔支架内的细胞增殖和细胞外基质沉积,我们用它来研究流体流动、营养物质传输和微观组织生长之间的耦合。我们将注意力限制在充满牛顿流体的刚性多孔介质内的表面增生;通过将微观生长速率指定为依赖于一种通用可扩散营养物质的摄取来实现各种动力学之间的耦合。由此产生的宏观模型包括一个控制流体流动的达西型方程,其流动特性由假定的多孔介质周期性微观结构和表面生长速率决定,并与一个指定营养物质浓度的平流 - 反应方程相耦合。给出了说明性的数值模拟,以表明微观生长对宏观动力学的影响,并强调在组织工程应用中纳入与实验相关的微观结构信息对于正确确定流动动力学和营养物质输送的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验