Suppr超能文献

利用生物工程系统中的自组织:一种计算方法。

Exploiting Self-organization in Bioengineered Systems: A Computational Approach.

作者信息

Davis Delin, Doloman Anna, Podgorski Gregory J, Vargis Elizabeth, Flann Nicholas S

机构信息

Computer Science Department, Utah State University, Logan, UT, USA.

Department of Biological Engineering, Utah State University, Logan, UT, USA.

出版信息

Front Bioeng Biotechnol. 2017 Apr 28;5:27. doi: 10.3389/fbioe.2017.00027. eCollection 2017.

Abstract

The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate that at least an order of magnitude increase in production is possible, the system can be scaled up, and the self-organization of an efficient vascular network is robust. The work suggests that bioengineered multicellularity may offer efficiency improvements difficult to achieve with physical engineering approaches.

摘要

生物工程细胞工厂的生产力受到营养物质输送以及废物和产物清除效率低下的限制。当前的解决方法探索生物反应器物理结构的变化。这项工作研究利用自组织血管网络来支持工厂内生产细胞的可能性。一个计算模型模拟了类内皮细胞的血管发育以及由此产生的网络功能,以从细胞培养物中输送营养物质并提取产物和废物。与没有血管网络的细胞工厂相比,对具有血管网络的微生物工厂的可扩展性、稳健性和生产力进行了评估。初步研究表明,产量至少有可能提高一个数量级,该系统可以扩大规模,并且高效血管网络的自组织是稳健的。这项工作表明,生物工程多细胞性可能带来物理工程方法难以实现的效率提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5522/5408088/07619c9ad920/fbioe-05-00027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验