Suppr超能文献

同步氧疗对预测术后即将发生的低氧血症准确性的影响。

Effect of concurrent oxygen therapy on accuracy of forecasting imminent postoperative desaturation.

作者信息

ElMoaqet Hisham, Tilbury Dawn M, Ramachandran Satya Krishna

机构信息

Mechanical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA,

出版信息

J Clin Monit Comput. 2015 Aug;29(4):521-31. doi: 10.1007/s10877-014-9629-8. Epub 2014 Oct 19.

Abstract

Episodic postoperative desaturation occurs predominantly from respiratory depression or airway obstruction. Monitor display of desaturation is typically delayed by over 30 s after these dynamic inciting events, due to perfusion delays, signal capture and averaging. Prediction of imminent critical desaturation could aid development of dynamic high-fidelity response systems that reduce or prevent the inciting event from occurring. Oxygen therapy is known to influence the depth and duration of desaturation epochs, thereby potentially influencing the accuracy of forecasting of desaturation. In this study, postoperative pulse oximetry data were retrospectively modeled using autoregressive methods to create prediction models for [Formula: see text] and imminent critical desaturation in the postoperative period. The accuracy of these models in predicting near future [Formula: see text] values was tested using root mean square error. The model accuracy for prediction of critical desaturation ([Formula: see text] [Formula: see text]) was evaluated using meta-analytical methods (sensitivity, specificity, likelihood ratios, diagnostic odds ratios and area under summary receiver operating characteristic curves). Between-study heterogeneity was used as a measure of reliability of the model across different patients and evaluated using the tau-squared statistic. Model performance was evaluated in [Formula: see text] patients who received postoperative oxygen supplementation and [Formula: see text] patients who did not receive oxygen. Our results show that model accuracy was high with root mean square errors between 0.2 and 2.8%. Prediction accuracy as defined by area under the curve for critical desaturation events was observed to be greater in patients receiving oxygen in the 60-s horizon ([Formula: see text] vs. [Formula: see text]). This was likely related to the higher frequency of events in this group (median [IQR] [Formula: see text] [Formula: see text]) than patients who were not treated with oxygen ([Formula: see text] [Formula: see text]; [Formula: see text]). Model reliability was reflected by the homogeneity of the prediction models which were homogenous across both prediction horizons and oxygen treatment groups. In conclusion, we report the use of autoregressive models to predict [Formula: see text] and forecast imminent critical desaturation events in the postoperative period with high degree of accuracy. These models reliably predict critical desaturation in patients receiving supplemental oxygen therapy. While high-fidelity prophylactic interventions that could modify these inciting events are in development, our current study offers proof of concept that the afferent limb of such a system can be modeled with a high degree of accuracy.

摘要

术后发作性血氧饱和度下降主要源于呼吸抑制或气道阻塞。由于灌注延迟、信号捕获和平均化,在这些动态诱发事件发生后,监测显示的血氧饱和度下降通常会延迟30多秒。预测即将发生的严重血氧饱和度下降可能有助于开发动态高保真反应系统,以减少或防止诱发事件的发生。已知氧疗会影响血氧饱和度下降阶段的深度和持续时间,从而可能影响血氧饱和度下降预测的准确性。在本研究中,使用自回归方法对术后脉搏血氧饱和度数据进行回顾性建模,以创建术后[公式:见正文]和即将发生的严重血氧饱和度下降的预测模型。使用均方根误差测试这些模型在预测近期[公式:见正文]值方面的准确性。使用荟萃分析方法(敏感性、特异性、似然比、诊断比值比和汇总接受者操作特征曲线下面积)评估预测严重血氧饱和度下降([公式:见正文][公式:见正文])的模型准确性。研究间异质性用作模型在不同患者中的可靠性指标,并使用tau平方统计量进行评估。在[公式:见正文]例接受术后氧补充的患者和[公式:见正文]例未接受氧的患者中评估模型性能。我们的结果表明,模型准确性很高,均方根误差在0.2%至2.8%之间。观察到在60秒范围内接受氧疗的患者中,由严重血氧饱和度下降事件曲线下面积定义的预测准确性更高([公式:见正文]对[公式:见正文])。这可能与该组事件发生频率较高(中位数[四分位间距][公式:见正文][公式:见正文])有关,而未接受氧疗的患者([公式:见正文][公式:见正文];[公式:见正文])事件发生频率较低。预测模型的同质性反映了模型的可靠性,在两个预测范围和氧疗组中模型都是同质的。总之,我们报告了使用自回归模型预测术后[公式:见正文]并高度准确地预测即将发生的严重血氧饱和度下降事件。这些模型能够可靠地预测接受补充氧疗患者的严重血氧饱和度下降。虽然能够改变这些诱发事件的高保真预防性干预措施正在研发中,但我们目前的研究提供了概念证明,即这种系统的传入分支可以高度准确地建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验