Suppr超能文献

利用基因表达微阵列数据合并鉴定干燥综合征潜在的基因组生物标志物。

Identification of potential genomic biomarkers for Sjögren's syndrome using data pooling of gene expression microarrays.

作者信息

Khuder Sadik A, Al-Hashimi Ibtisam, Mutgi Anand B, Altorok Nezam

机构信息

Department of Medicine, University of Toledo Health Science Campus, 3000 Arlington Ave., Mailstop 1186, Toledo, OH, USA.

出版信息

Rheumatol Int. 2015 May;35(5):829-36. doi: 10.1007/s00296-014-3152-6. Epub 2014 Oct 20.

Abstract

Sjögren's syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and destruction of salivary and lacrimal glands. The diagnosis of SS can be challenging due to lack of a specific test for the disease. The purpose of this study is to examine the accuracy of using gene expression profile for diagnosis of SS. We identified 9 publically available datasets that included gene expression data from saliva and salivary gland biopsy samples of 52 patients with SS and 51 controls. Out of these datasets, we compiled and pooled data from three datasets that included 37 and 29 samples from SS patients and healthy controls, respectively, which were designated as "training set." Then, we performed cross-listing in a group of independent gene expression datasets from patients with SS to identify consensus gene list of differentially expressed genes. We performed Linear Discriminant Analysis (LDA) to quantify the accuracy of discriminating genes to predict SS in both the "training set" and an independent group of datasets that was designated as "test set." We identified 55 genes as potential classifier genes to differentiate SS from healthy controls. An LDA by leave-one-out cross-validation method identified 19 genes (EPSTI1, IFI44, IFI44L, IFIT1, IFIT2, IFIT3, MX1, OAS1, SAMD9L, PSMB9, STAT1, HERC5, EV12B, CD53, SELL, HLA-DQA1, PTPRC, B2M, and TAP2) with highest classification accuracy rate (95.7 %). Moreover, we validated our results by reproducing the same gene expression profile as a discriminatory test in the "test set," which included data from salivary gland samples of 15 patients with SS and 22 controls with 94.6 % accuracy. We propose that gene expression profile in the saliva or salivary glands could represent a promising simple and reproducible diagnostic biomarker for SS.

摘要

干燥综合征(SS)是一种自身免疫性疾病,其特征为淋巴细胞浸润以及唾液腺和泪腺的破坏。由于缺乏针对该疾病的特异性检测方法,SS的诊断可能具有挑战性。本研究的目的是检验使用基因表达谱诊断SS的准确性。我们识别出9个公开可用的数据集,这些数据集包含来自52例SS患者和51例对照的唾液和唾液腺活检样本的基因表达数据。在这些数据集中,我们汇总并合并了来自三个数据集的数据,这三个数据集分别包含37例SS患者样本和29例健康对照样本,它们被指定为“训练集”。然后,我们在一组来自SS患者的独立基因表达数据集中进行交叉列联,以识别差异表达基因的共识基因列表。我们进行线性判别分析(LDA),以量化在“训练集”和被指定为“测试集”的独立数据集组中区分基因以预测SS的准确性。我们识别出55个基因作为区分SS与健康对照的潜在分类基因。通过留一法交叉验证方法进行的LDA识别出19个基因(EPSTI1、IFI44、IFI44L、IFIT1、IFIT2、IFIT3、MX1、OAS1、SAMD9L、PSMB9、STAT1、HERC5、EV12B、CD53、SELL、HLA - DQA1、PTPRC、B2M和TAP2),其分类准确率最高(95.7%)。此外,我们通过在“测试集”中重现相同的基因表达谱作为鉴别试验来验证我们的结果,该“测试集”包含来自15例SS患者唾液腺样本和22例对照的数据,准确率为94.6%。我们提出,唾液或唾液腺中的基因表达谱可能代表一种有前景的、简单且可重复的SS诊断生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验