Grabe Veit, Strutz Antonia, Baschwitz Amelie, Hansson Bill S, Sachse Silke
Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
J Comp Neurol. 2015 Feb 15;523(3):530-44. doi: 10.1002/cne.23697. Epub 2014 Nov 12.
As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well-understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL-the olfactory glomeruli-is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n-synaptobrevin, under the control of the pan-neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4-lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4-lines in olfactory research: Orco- and GH146-GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community.
作为初级嗅觉感知的模型,黑腹果蝇的触角叶(AL)是研究最深入、理解最透彻的神经元结构之一。大多数关于AL功能特性和神经元连接的研究是在体内进行的,尽管到目前为止,AL的形态主要是在体外进行分析的。识别AL的形态亚单位——嗅觉小球,通常是使用体外AL图谱来完成的。然而,解剖和固定过程不仅会导致强烈的体积变化,还会引起几何形状的改变;其结果是体外和体内大脑之间的AL小球出现不可预测的错位和变形。因此,为了表征由体外处理引起的这些伪影,并可靠地识别用于体内应用的小球,我们构建了一种转基因果蝇,该果蝇在泛神经元启动子elav的控制下,表达直接与突触前蛋白n-突触融合蛋白融合的红色荧光蛋白DsRed,以标记活体动物中的神经纤维网。利用这种果蝇品系,我们生成了活体果蝇AL的数字3D图谱;这是同类图谱中的第一个,为体内研究提供了极佳的几何匹配。我们通过绘制34个单个化学感应受体基因的GAL4品系的投射,验证了63%的AL小球的身份。此外,我们还表征了嗅觉研究中最常用的两个GAL4品系:Orco-和GH146-GAL4的神经支配模式。新的体内AL图谱将向神经科学界在线开放。