Suppr超能文献

一种用于神经外科手术导航的强大的自动无标记配准框架。

A robust automated markerless registration framework for neurosurgery navigation.

作者信息

Jiang Long, Zhang Shaoting, Yang Jie, Zhuang Xiahai, Zhang Lixia, Gu Lixu

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, People's Republic of China.

Department of Computer Science, University of North Carolina at Charlotte, NC, USA.

出版信息

Int J Med Robot. 2015 Dec;11(4):436-47. doi: 10.1002/rcs.1626. Epub 2014 Oct 19.

Abstract

BACKGROUND

The registration of a pre-operative image with the intra-operative patient is a crucial aspect for the success of navigation in neurosurgery.

METHODS

First, the intra-operative face is reconstructed, using a structured light technique, while the pre-operative face is segmented from head CT/MRI images. In order to perform neurosurgery navigation, a markerless surface registration method is designed by aligning the intra-operative face to the pre-operative face. We propose an efficient and robust registration approach based on the scale invariant feature transform (SIFT), and compare it with iterative closest point (ICP) and coherent point drift (CPD) through a new evaluation standard.

RESULTS

Our registration method was validated by studies of 10 volunteers and one synthetic model. The average symmetrical surface distances (ASDs) for ICP, CPD and our registration method were 2.24 ± 0.53, 2.18 ± 0.41 and 2.30 ± 0.69 mm, respectively. The average running times of ICP, CPD and our registration method were 343.46, 3847.56 and 0.58 s, respectively.

CONCLUSION

Our system can quickly reconstruct the intra-operative face, and then efficiently and accurately align it to the pre-operative image, meeting the registration requirements in neurosurgery navigation. It avoids a tedious set-up process for surgeons.

摘要

背景

术前图像与术中患者的配准是神经外科手术导航成功的关键环节。

方法

首先,使用结构光技术重建术中面部,同时从头部CT/MRI图像中分割出术前面部。为了进行神经外科手术导航,通过将术中面部与术前面部对齐,设计了一种无标记表面配准方法。我们提出了一种基于尺度不变特征变换(SIFT)的高效且稳健的配准方法,并通过一种新的评估标准将其与迭代最近点(ICP)和相干点漂移(CPD)进行比较。

结果

我们的配准方法通过对10名志愿者和一个合成模型的研究得到验证。ICP、CPD和我们的配准方法的平均对称表面距离(ASD)分别为2.24±0.53、2.18±0.41和2.30±0.69毫米。ICP、CPD和我们的配准方法的平均运行时间分别为343.46、3847.56和0.58秒。

结论

我们的系统能够快速重建术中面部,然后高效准确地将其与术前图像对齐,满足神经外科手术导航中的配准要求。它避免了外科医生繁琐的设置过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验