Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, Milan, Italy.
Unit of Surgical Neuro-Oncology, Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy.
Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1711-1725. doi: 10.1007/s11548-017-1578-5. Epub 2017 Apr 8.
BACKGROUND: Brainshift is still a major issue in neuronavigation. Incorporating intra-operative ultrasound (iUS) with advanced registration algorithms within the surgical workflow is regarded as a promising approach for a better understanding and management of brainshift. This work is intended to (1) provide three-dimensional (3D) ultrasound reconstructions specifically for brain imaging in order to detect brainshift observed intra-operatively, (2) evaluate a novel iterative intra-operative ultrasound-based deformation correction framework, and (3) validate the performance of the proposed image-registration-based deformation estimation in a clinical environment. METHODS: Eight patients with brain tumors undergoing surgical resection are enrolled in this study. For each patient, a 3D freehand iUS system is employed in combination with an intra-operative navigation (iNav) system, and intra-operative ultrasound data are acquired at three timepoints during surgery. On this foundation, we present a novel resolution-preserving 3D ultrasound reconstruction, as well as a framework to detect brainshift through iterative registration of iUS images. To validate the system, the target registration error (TRE) is evaluated for each patient, and both rigid and elastic registration algorithms are analyzed. RESULTS: The mean TRE based on 3D-iUS improves significantly using the proposed brainshift compensation compared to neuronavigation (iNav) before (2.7 vs. 5.9 mm; [Formula: see text]) and after dural opening (4.2 vs. 6.2 mm, [Formula: see text]), but not after resection (6.7 vs. 7.5 mm; [Formula: see text]). iUS depicts a significant ([Formula: see text]) dynamic spatial brainshift throughout the three timepoints. Accuracy of registration can be improved through rigid and elastic registrations by 29.2 and 33.3%, respectively, after dural opening, and by 5.2 and 0.4%, after resection. CONCLUSION: 3D-iUS systems can improve the detection of brainshift and significantly increase the accuracy of the navigation in a real scenario. 3D-iUS can thus be regarded as a robust, reliable, and feasible technology to enhance neuronavigation.
背景:脑移位仍然是神经导航中的一个主要问题。将术中超声(iUS)与先进的配准算法结合到手术流程中被认为是更好地理解和管理脑移位的一种有前途的方法。本工作旨在:(1)提供专门用于脑成像的三维(3D)超声重建,以检测术中观察到的脑移位;(2)评估一种新的基于迭代术中超声的变形校正框架;(3)在临床环境中验证基于图像配准的变形估计的性能。
方法:本研究纳入了 8 名接受脑肿瘤切除术的患者。对于每位患者,使用 3D 自由手 iUS 系统与术中导航(iNav)系统相结合,并在手术过程中三个时间点采集术中超声数据。在此基础上,我们提出了一种新的分辨率保持的 3D 超声重建方法,以及一种通过迭代注册 iUS 图像来检测脑移位的框架。为了验证系统,我们对每位患者的靶标注册误差(TRE)进行了评估,并分析了刚性和弹性配准算法。
结果:与神经导航(iNav)相比,使用所提出的脑移位补偿后,基于 3D-iUS 的平均 TRE 在硬脑膜打开前(2.7 比 5.9mm;[公式:见正文])和硬脑膜打开后(4.2 比 6.2mm,[公式:见正文])显著改善,但在切除后(6.7 比 7.5mm;[公式:见正文])则没有。iUS 在三个时间点都能描绘出显著的([公式:见正文])动态空间脑移位。在硬脑膜打开后,刚性和弹性配准分别可以将注册的准确性提高 29.2%和 33.3%,在切除后则可以提高 5.2%和 0.4%。
结论:3D-iUS 系统可以提高脑移位的检测能力,并在实际场景中显著提高导航的准确性。因此,3D-iUS 可以被视为一种强大、可靠且可行的增强神经导航的技术。
Int J Comput Assist Radiol Surg. 2017-4-8
Int J Comput Assist Radiol Surg. 2016-8-31
World Neurosurg. 2019-7-31
Int J Comput Assist Radiol Surg. 2019-8-23
Minim Invasive Neurosurg. 2006-8
Int J Comput Assist Radiol Surg. 2018-1-12
Int J Comput Assist Radiol Surg. 2017-3-7
Cancers (Basel). 2021-8-20
Biomed Res Int. 2021
Cancers (Basel). 2021-3-3
J Med Imaging (Bellingham). 2020-5
Med Image Anal. 2016-8-24
Acta Neurochir (Wien). 2016-6
Int J Comput Assist Radiol Surg. 2016-3
Int J Comput Assist Radiol Surg. 2015-11
Med Image Anal. 2014-5-2