Kaur Gurmanik, Arora Ajat Shatru, Jain Vijender Kumar
Electrical and Instrumentation Engineering Department, Sant Longowal Institute of Engineering & Technology, Deemed University (Established by Government of India), Longowal, Sangrur District, Punjab 148106, India.
Comput Math Methods Med. 2014;2014:762501. doi: 10.1155/2014/762501. Epub 2014 Sep 21.
High blood pressure (BP) is associated with an increased risk of cardiovascular diseases. Therefore, optimal precision in measurement of BP is appropriate in clinical and research studies. In this work, anthropometric characteristics including age, height, weight, body mass index (BMI), and arm circumference (AC) were used as independent predictor variables for the prediction of BP reactivity to talking. Principal component analysis (PCA) was fused with artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS), and least square-support vector machine (LS-SVM) model to remove the multicollinearity effect among anthropometric predictor variables. The statistical tests in terms of coefficient of determination (R (2)), root mean square error (RMSE), and mean absolute percentage error (MAPE) revealed that PCA based LS-SVM (PCA-LS-SVM) model produced a more efficient prediction of BP reactivity as compared to other models. This assessment presents the importance and advantages posed by PCA fused prediction models for prediction of biological variables.
高血压与心血管疾病风险增加相关。因此,在临床和研究中,精确测量血压是合适的。在这项工作中,人体测量学特征,包括年龄、身高、体重、体重指数(BMI)和臂围(AC),被用作预测说话时血压反应性的独立预测变量。主成分分析(PCA)与人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LS-SVM)模型相结合,以消除人体测量预测变量之间的多重共线性影响。根据决定系数(R (2))、均方根误差(RMSE)和平均绝对百分比误差(MAPE)进行的统计测试表明,与其他模型相比,基于主成分分析的最小二乘支持向量机(PCA-LS-SVM)模型对血压反应性的预测更有效。该评估展示了主成分分析融合预测模型在预测生物变量方面的重要性和优势。