Suppr超能文献

交叉腿时血压反应的混合模型预测的比较分析。

Comparative Analysis of Hybrid Models for Prediction of BP Reactivity to Crossed Legs.

机构信息

Department of Electrical Engineering, SBBSU, Khiala, District Jalandhar, Punjab 144030, India.

Department of Electrical and Instrumentation Engineering, SLIET, Deemed University (Established by Govt. of India), Longowal, District Sangrur, Punjab 148106, India.

出版信息

J Healthc Eng. 2017;2017:2187904. doi: 10.1155/2017/2187904. Epub 2017 Nov 26.

Abstract

Crossing the legs at the knees, during BP measurement, is one of the several physiological stimuli that considerably influence the accuracy of BP measurements. Therefore, it is paramount to develop an appropriate prediction model for interpreting influence of crossed legs on BP. This research work described the use of principal component analysis- (PCA-) fused forward stepwise regression (FSWR), artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), and least squares support vector machine (LS-SVM) models for prediction of BP reactivity to crossed legs among the normotensive and hypertensive participants. The evaluation of the performance of the proposed prediction models using appropriate statistical indices showed that the PCA-based LS-SVM (PCA-LS-SVM) model has the highest prediction accuracy with coefficient of determination () = 93.16%, root mean square error (RMSE) = 0.27, and mean absolute percentage error (MAPE) = 5.71 for SBP prediction in normotensive subjects. Furthermore,  = 96.46%, RMSE = 0.19, and MAPE = 1.76 for SBP prediction and  = 95.44%, RMSE = 0.21, and MAPE = 2.78 for DBP prediction in hypertensive subjects using the PCA-LSSVM model. This assessment presents the importance and advantages posed by hybrid computing models for the prediction of variables in biomedical research studies.

摘要

在测量血压时,双腿在膝盖处交叉是影响血压测量准确性的几个生理刺激因素之一。因此,开发一种合适的预测模型来解释双腿交叉对血压的影响至关重要。本研究工作描述了使用主成分分析-(PCA-)融合逐步向前回归(FSWR)、人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LS-SVM)模型来预测正常血压和高血压参与者双腿交叉时的血压反应。使用适当的统计指标评估所提出的预测模型的性能表明,基于 PCA 的 LS-SVM(PCA-LS-SVM)模型具有最高的预测准确性,决定系数()为 93.16%,均方根误差(RMSE)为 0.27,平均绝对百分比误差(MAPE)为 5.71,用于预测正常血压受试者的 SBP。此外,在高血压受试者中,用于预测 SBP 的  = 96.46%,RMSE  = 0.19,MAPE  = 1.76,用于预测 DBP 的  = 95.44%,RMSE  = 0.21,MAPE  = 2.78,使用 PCA-LSSVM 模型。该评估展示了混合计算模型在预测生物医学研究中变量方面的重要性和优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/5727829/4cda44212e9d/JHE2017-2187904.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验