IEEE Trans Neural Netw Learn Syst. 2014 Nov;25(11):2043-52. doi: 10.1109/TNNLS.2014.2303086.
Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.
多小波具有比传统小波更好的性质。多小波包变换具有更多的高频信息。谱熵可以作为信号复杂度或不确定性的分析指标。本文尝试定义四种多小波包熵,以提取不同输电线路故障的特征,并使用径向基函数(RBF)神经网络识别和分类 10 种输电线路故障类型。首先,提出了多小波的预处理和后处理问题。引入了香农熵和 Tsallis 熵,并讨论了它们的区别。其次,定义了多小波包能量熵、时间熵、Shannon 奇异熵和 Tsallis 奇异熵作为输电线路故障信号的特征提取方法。然后,提出了基于多小波包熵和 RBF 神经网络的输电线路故障识别方案。最后,实验结果表明,本文定义的四种多小波包能量熵的方案在故障识别中具有更好的性能。在不同多小波包和四种多小波包熵的组合中,SA4(对称反对称)多小波包 Tsallis 奇异熵的性能最好。