Suppr超能文献

基于VMD-RCMWPE特征提取与WOA-SVM优化的多数据集融合的轴承故障诊断研究

Research on Bearing Fault Diagnosis Based on VMD-RCMWPE Feature Extraction and WOA-SVM-Optimized Multidataset Fusion.

作者信息

Wang Shouda, Wang Chenglong, Lian Youwei, Luo Bin

机构信息

National Engineering Research Center for Technology and Equipment of Green Coating, Lanzhou Jiaotong University, Lanzhou 730070, China.

出版信息

Sensors (Basel). 2025 Aug 19;25(16):5139. doi: 10.3390/s25165139.

Abstract

Bearings are critical components whose failures in industrial machinery can lead to catastrophic breakdowns and costly downtime; yet, accurate early-stage diagnosis remains challenging due to the non-stationary, nonlinear nature of vibration signals and noise interference. This study proposes a multidataset-integrated bearing fault diagnosis methodology incorporating variational mode decomposition (VMD), refined composite multiscale weighted permutation entropy (RCMWPE) feature extraction, and whale optimization algorithm (WOA)-optimized support vector machine (SVM). Addressing the non-stationary and nonlinear characteristics of bearing vibration signals, raw signals are first decomposed via VMD to effectively separate intrinsic mode functions (IMFs) carrying distinct frequency components. Subsequently, RCMWPE features are extracted from each IMF component to construct high-dimensional feature vectors. To address visualization challenges and mitigate feature redundancy, the t-distributed stochastic neighbor embedding (t-SNE) algorithm is employed for dimensionality reduction. Finally, WOA optimizes critical SVM parameters to establish an efficient fault classification model. The methodology is validated on two public bearing datasets: PRONOSTIA and CWRU. For four-class fault diagnosis on the PRONOSTIA dataset, the model achieves 96.5% accuracy. Extended to ten-class diagnosis on the CWRU dataset, accuracy reaches 99.67%. Experimental results demonstrate that the proposed method exhibits exceptional fault identification capability, robustness, and generalization performance across diverse datasets and complex fault modes. This approach offers an effective technical pathway for early bearing fault warning and maintenance decision making.

摘要

轴承是关键部件,其在工业机械中的故障可能导致灾难性故障和高昂的停机成本;然而,由于振动信号的非平稳、非线性特性以及噪声干扰,准确的早期诊断仍然具有挑战性。本研究提出了一种多数据集集成的轴承故障诊断方法,该方法结合了变分模态分解(VMD)、改进的复合多尺度加权排列熵(RCMWPE)特征提取以及鲸鱼优化算法(WOA)优化的支持向量机(SVM)。针对轴承振动信号的非平稳和非线性特性,首先通过VMD对原始信号进行分解,以有效分离携带不同频率成分的固有模态函数(IMF)。随后,从每个IMF分量中提取RCMWPE特征,以构建高维特征向量。为了解决可视化挑战并减轻特征冗余,采用t分布随机邻域嵌入(t-SNE)算法进行降维。最后,WOA优化关键的SVM参数,以建立高效的故障分类模型。该方法在两个公共轴承数据集PRONOSTIA和CWRU上得到验证。对于PRONOSTIA数据集上的四类故障诊断,该模型的准确率达到96.5%。扩展到CWRU数据集上的十类诊断,准确率达到99.67%。实验结果表明,所提出的方法在不同数据集和复杂故障模式下均表现出卓越的故障识别能力、鲁棒性和泛化性能。该方法为轴承早期故障预警和维修决策提供了一条有效的技术途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9ea/12390204/265ffb960f89/sensors-25-05139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验