IEEE Trans Cybern. 2014 Nov;44(11):1997-2009. doi: 10.1109/TCYB.2014.2307257.
This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.
本文针对一类具有饱和和死区静态非线性以及二阶积分模型的伺服系统,提出了新一代最优 PI 控制器。目标函数表示为时间与绝对误差的乘积积分加上状态灵敏度模型输出灵敏度函数关于两个过程参数变化的加权和积分。应用于简化线性过程模型的 PI 控制器调谐条件涉及到一个特定于扩展对称最优 (ESO) 方法的单个设计参数,该方法为几个控制系统性能指标提供了所需的折衷。为了防止积分器饱和并补偿过程的死区非线性,提出了一种原始的回溯和跟踪抗积分饱和方案。目标函数的最小化是在具有不等式约束的优化问题框架内进行的,这些约束保证了对过程参数变化和控制器鲁棒性的鲁棒稳定性。自适应引力搜索算法 (GSA) 解决了优化问题,重点是针对 ESO 方法的特定设计参数和抗积分饱和跟踪增益的优化调谐。提出了一种 PI 控制器的整定方法,作为设计弹性控制系统的有效方法。通过基于自适应 GSA 的实验室伺服系统角位置控制的 PI 控制器整定,验证了该整定方法和 PI 控制器。