Suppr超能文献

基于登山队的优化算法首次应用于优化含可再生能源的孤岛微电网负荷频率控制的1PD-PI控制器。

Maiden application of mountaineering team-based optimization algorithm optimized 1PD-PI controller for load frequency control in islanded microgrid with renewable energy sources.

作者信息

Davoudkhani Iraj Faraji, Zare Peyman, Shenava Seyed Jalal Seyed, Abdelaziz Almoataz Y, Bajaj Mohit, Tuka Milkias Berhanu

机构信息

Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt.

出版信息

Sci Rep. 2024 Oct 1;14(1):22851. doi: 10.1038/s41598-024-74051-x.

Abstract

Load Frequency Control (LFC) is essential for maintaining the stability of Islanded Microgrids (IMGs) that rely extensively on Renewable Energy Sources (RES). This paper introduces a groundbreaking 1PD-PI (one + Proportional + Derivative-Proportional + Integral) controller, marking its inaugural use in improving LFC performance within IMGs. The creation of this advanced controller stems from the amalgamation of 1PD and PI control strategies. Furthermore, the paper presents the Mountaineering Team Based Optimization (MTBO) algorithm, a novel meta-heuristic technique introduced for the first time to effectively tackle LFC challenges. This algorithm, inspired by principles of intellectual and environmental evolution and coordinated human behavior, is utilized to optimize the controller gains. The effectiveness of the proposed methodology is rigorously evaluated within a simulated IMG environment using MATLAB/SIMULINK. This simulated IMG incorporates diverse power generation sources, including Diesel Engine Generators (DEGs), Microturbines (MTs), Fuel Cells (FCs), Energy Storage Systems (ESSs), and RES units like Wind Turbine Generators (WTGs) and Photovoltaics (PVs). This paper employs the Integral Time Multiplied by the Squared Error (ITSE) and Integral of Time Multiplied By Absolute Error (ITAE) indicators as the primary performance metrics, conventionally used to mitigate frequency deviations. To achieve optimal controller parameter tuning, a weighted composite objective function is formulated. This function incorporates multiple components: modified objective functions related to both ITSE and ITAE, along with a term addressing overshoot and settling time. Each component is assigned an appropriate weighting factor to prioritize specific performance aspects. By employing distinct objective functions for different aspects of control performance, the derivation of optimized controller gains is facilitated. The efficacy and contribution of the proposed methodology are rigorously demonstrated within the context of RES-based IMGs, featuring a comparative analysis with well-known optimization algorithms, including Particle Swarm Optimization (PSO) and the Whale Optimization Algorithm (WOA). These algorithms are used to optimize the 1PD-PI controller, resulting in three control schemes: 1PD-PI/MTBO, 1PD-PI/WOA, and 1PD-PI/PSO. The effectiveness of these control schemes is evaluated under various loading conditions, incorporating parametric uncertainties and nonlinear factors of physical constraints. Three case studies, presented in eight scenarios (I-VIII), are utilized to comprehensively assess the efficiency, robustness, and sensitivity of the proposed approach. This analysis extends beyond the time domain, considering the stability evaluation of the proposed control scheme. Simulation results unequivocally establish the superior performance of the MTBO algorithm-optimized 1PD-PI controller compared to its counterparts. This superiority is evident in terms of minimized settling time, reduced peak undershoot and overshoot, and enhanced error-integrating performance characteristics within the system responses. Improvements are observed in both the high range and within the 80-90% range for criteria such as overshoot, undershoot, and the numerical values of the objective functions. This paper underscores the practicality and effectiveness of the 1PD-PI/MTBO control scheme, offering valuable insights into the management of frequency disturbances in RES-based IMGs.

摘要

负荷频率控制(LFC)对于维持广泛依赖可再生能源(RES)的孤立微电网(IMG)的稳定性至关重要。本文介绍了一种开创性的1PD-PI(一阶+比例+微分-比例+积分)控制器,这是其首次用于改善IMG中的LFC性能。这种先进控制器的创建源于1PD和PI控制策略的融合。此外,本文还提出了基于登山队的优化(MTBO)算法,这是一种首次引入的新颖元启发式技术,用于有效应对LFC挑战。该算法受智能和环境进化原理以及协调人类行为的启发,用于优化控制器增益。所提出方法的有效性在使用MATLAB/SIMULINK的模拟IMG环境中进行了严格评估。这个模拟IMG包含多种发电来源,包括柴油发动机发电机(DEG)、微型涡轮机(MT)、燃料电池(FC)、储能系统(ESS)以及风力发电机(WTG)和光伏(PV)等RES单元。本文采用积分时间乘以误差平方(ITSE)和时间乘以绝对误差积分(ITAE)指标作为主要性能指标,这些指标通常用于减轻频率偏差。为了实现最佳的控制器参数调整,制定了一个加权复合目标函数。该函数包含多个部分:与ITSE和ITAE相关的修改后的目标函数,以及一个解决超调量和调节时间的项。每个部分都被赋予适当的加权因子,以优先考虑特定的性能方面。通过为控制性能的不同方面采用不同的目标函数,便于推导优化的控制器增益。在所提出方法在基于RES的IMG背景下的有效性和贡献在与著名优化算法(包括粒子群优化(PSO)和鲸鱼优化算法(WOA))的比较分析中得到了严格证明。这些算法用于优化1PD-PI控制器,产生了三种控制方案:1PD-PI/MTBO、1PD-PI/WOA和1PD-PI/PSO。在各种负载条件下,结合物理约束的参数不确定性和非线性因素,对这些控制方案的有效性进行了评估。利用在八个场景(I-VIII)中呈现的三个案例研究,全面评估了所提出方法的效率、鲁棒性和灵敏度。这种分析超越了时域,考虑了所提出控制方案的稳定性评估。仿真结果明确表明,与其他方案相比,MTBO算法优化的1PD-PI控制器具有卓越的性能。这种优越性在最小化调节时间、减少峰值下冲和超调量以及增强系统响应中的误差积分性能特征方面表现明显。在超调量、下冲量和目标函数数值等标准方面,在高范围以及80-90%范围内都观察到了改进。本文强调了1PD-PI/MTBO控制方案的实用性和有效性,为基于RES的IMG中的频率干扰管理提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc01/11445566/1cc8e57fedef/41598_2024_74051_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验