Suppr超能文献

无骨细胞的骨骼重塑:旗鱼挑战骨骼结构-功能范式。

Remodeling in bone without osteocytes: billfish challenge bone structure-function paradigms.

作者信息

Atkins Ayelet, Dean Mason N, Habegger Maria Laura, Motta Phillip J, Ofer Lior, Repp Felix, Shipov Anna, Weiner Steve, Currey John D, Shahar Ron

机构信息

Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;

Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany;

出版信息

Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16047-52. doi: 10.1073/pnas.1412372111. Epub 2014 Oct 20.

Abstract

A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process.

摘要

四足动物骨骼的一个显著特性是其能够检测并重塑因长期使用而积累损伤的区域。这一过程被认为对骨骼的长期健康至关重要,据信是由骨细胞(骨基质中的细胞)启动并协调的。因此,令人惊讶的是,大多数现存鱼类(新硬骨鱼)缺乏骨细胞,这表明它们的骨骼并非持续修复,尽管许多物种寿命长且活动水平高,随着时间推移这些因素会导致相当程度的疲劳损伤。在这里,我们展示了旗鱼(如剑鱼、枪鱼)无骨细胞的细长吻骨中发生活跃且强烈重塑的证据。尽管缺乏骨细胞,但这种组织与大型哺乳动物的成熟骨骼有着惊人的相似之处,具有表明密集组织修复的结构特征(重叠的二级骨单位),特别是在预计承受高负荷的区域。然而,旗鱼的骨单位直径比哺乳动物的骨单位小一个数量级,这意味着这种骨骼中损伤的性质可能不同。虽然旗鱼的骨质与哺乳动物的骨骼一样坚硬(不像其他鱼类的骨骼),但在断裂前它能够承受大得多的应变(相对变形)。我们的数据表明,鱼骨的结构和生理机能可能比以前所知的要复杂得多,而且即使没有被认为是这一过程所必需的骨细胞,显然也能够进行局部修复。这些发现挑战了骨细胞在骨重塑中的独特和主要作用,而这是骨生物学的一个基本信条,增加了存在驱动这一过程的替代机制的可能性。

相似文献

1
Remodeling in bone without osteocytes: billfish challenge bone structure-function paradigms.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16047-52. doi: 10.1073/pnas.1412372111. Epub 2014 Oct 20.
2
The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism.
Biol Rev Camb Philos Soc. 2019 Aug;94(4):1338-1363. doi: 10.1111/brv.12505. Epub 2019 Mar 28.
3
Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness.
Anat Rec (Hoboken). 2011 Sep;294(9):1472-85. doi: 10.1002/ar.21452. Epub 2011 Aug 1.
4
Revisiting the links between bone remodelling and osteocytes: insights from across phyla.
Biol Rev Camb Philos Soc. 2017 Aug;92(3):1702-1719. doi: 10.1111/brv.12302. Epub 2016 Nov 14.
5
New insights into the process of osteogenesis of anosteocytic bone.
Bone. 2019 Aug;125:61-73. doi: 10.1016/j.bone.2019.05.013. Epub 2019 May 11.
6
The response of anosteocytic bone to controlled loading.
J Exp Biol. 2015 Nov;218(Pt 22):3559-69. doi: 10.1242/jeb.124073.
7
Swim training induces distinct osseous gene expression patterns in anosteocytic and osteocytic teleost fish.
Bone. 2024 Aug;185:117125. doi: 10.1016/j.bone.2024.117125. Epub 2024 May 15.
8
A novel nonosteocytic regulatory mechanism of bone modeling.
PLoS Biol. 2019 Feb 1;17(2):e3000140. doi: 10.1371/journal.pbio.3000140. eCollection 2019 Feb.
9
The enigmas of bone without osteocytes.
Bonekey Rep. 2013 May 1;2:343. doi: 10.1038/bonekey.2013.77.
10

引用本文的文献

1
Nanocrystal Compressive Residual Stresses: A Strategy to Strengthen the Bony Spines of Osteocytic and Anosteocytic Fish.
Adv Sci (Weinh). 2025 May;12(20):e2410617. doi: 10.1002/advs.202410617. Epub 2025 Apr 11.
2
Growth of a Tessellation: Geometric rules for the Development of Stingray Skeletal Patterns.
Adv Sci (Weinh). 2024 Dec;11(48):e2407641. doi: 10.1002/advs.202407641. Epub 2024 Nov 7.
4
The osteocyte and its osteoclastogenic potential.
Front Endocrinol (Lausanne). 2023 May 24;14:1121727. doi: 10.3389/fendo.2023.1121727. eCollection 2023.
8
3D Interrelationship between Osteocyte Network and Forming Mineral during Human Bone Remodeling.
Adv Healthc Mater. 2021 Jun;10(12):e2100113. doi: 10.1002/adhm.202100113. Epub 2021 May 8.
9
Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography.
Sci Adv. 2021 Mar 31;7(14). doi: 10.1126/sciadv.abb9113. Print 2021 Mar.
10
The Genomes of Two Billfishes Provide Insights into the Evolution of Endothermy in Teleosts.
Mol Biol Evol. 2021 May 19;38(6):2413-2427. doi: 10.1093/molbev/msab035.

本文引用的文献

1
How sailfish use their bills to capture schooling prey.
Proc Biol Sci. 2014 Apr 23;281(1784):20140444. doi: 10.1098/rspb.2014.0444. Print 2014 Jun 7.
2
The enigmas of bone without osteocytes.
Bonekey Rep. 2013 May 1;2:343. doi: 10.1038/bonekey.2013.77.
3
Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties.
J Struct Biol. 2013 Aug;183(2):107-22. doi: 10.1016/j.jsb.2013.04.012. Epub 2013 May 9.
4
Mega-Bites: extreme jaw forces of living and extinct piranhas (Serrasalmidae).
Sci Rep. 2012;2:1009. doi: 10.1038/srep01009. Epub 2012 Dec 20.
6
Osteocyte signaling in bone.
Curr Osteoporos Rep. 2012 Jun;10(2):118-25. doi: 10.1007/s11914-012-0105-4.
7
Osteocyte RANKL: new insights into the control of bone remodeling.
J Bone Miner Res. 2012 Mar;27(3):499-505. doi: 10.1002/jbmr.1547.
8
The amazing osteocyte.
J Bone Miner Res. 2011 Feb;26(2):229-38. doi: 10.1002/jbmr.320.
9
Osteocyte mechanobiology and pericellular mechanics.
Annu Rev Biomed Eng. 2010 Aug 15;12:369-400. doi: 10.1146/annurev-bioeng-070909-105302.
10
Mechanistic aspects of the fracture toughness of elk antler bone.
Acta Biomater. 2010 Apr;6(4):1505-14. doi: 10.1016/j.actbio.2009.11.026. Epub 2009 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验