Suppr超能文献

没有骨细胞的骨骼之谜。

The enigmas of bone without osteocytes.

作者信息

Shahar Ron, Dean Mason N

机构信息

Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Israel.

Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Potsdam, Germany.

出版信息

Bonekey Rep. 2013 May 1;2:343. doi: 10.1038/bonekey.2013.77.

Abstract

One of the hallmarks of tetrapod bone is the presence of numerous cells (osteocytes) within the matrix. Osteocytes are vital components of tetrapod bone, orchestrating the processes of bone building, reshaping and repairing (modeling and remodeling), and probably also participating in calcium-phosphorus homeostasis via both the local process of osteocytic osteolysis, and systemic effect on the kidneys. Given these critical roles of osteocytes, it is thought-provoking that the entire skeleton of many fishes consists of bone material that does not contain osteocytes. This raises the intriguing question of how the skeleton of these animals accomplishes the various essential functions attributed to osteocytes in other vertebrates, and raises the possibility that in acellular bone some of these functions are either accomplished by non-osteocytic routes or not necessary at all. In this review, we outline evidence for and against the fact that primary functions normally ascribed to osteocytes, such as mechanosensation, regulation of osteoblast/clast activity and mineral metabolism, also occur in fish bone devoid of these cells, and therefore must be carried out through alternative and perhaps ancient pathways. To enable meaningful comparisons with mammalian bone, we suggest thorough, phylogenetic examinations of regulatory pathways, studies of structure and mechanical properties and surveys of the presence/absence of bone cells in fishes. Insights gained into the micro-/nanolevel structure and architecture of fish bone, its mechanical properties and its physiology in health and disease will contribute to the discipline of fish skeletal biology, but may also help answer questions of basic bone biology.

摘要

四足动物骨骼的一个显著特征是基质中存在大量细胞(骨细胞)。骨细胞是四足动物骨骼的重要组成部分,协调骨骼构建、重塑和修复(建模和重塑)过程,并且可能还通过骨细胞性骨溶解的局部过程以及对肾脏的全身作用参与钙磷稳态。鉴于骨细胞的这些关键作用,许多鱼类的整个骨骼由不含骨细胞的骨质组成,这一现象发人深省。这就引出了一个有趣的问题:这些动物的骨骼如何完成其他脊椎动物中归因于骨细胞的各种基本功能,并且引发了一种可能性,即在无细胞骨中,其中一些功能要么通过非骨细胞途径完成,要么根本就不需要。在这篇综述中,我们概述了支持和反对以下观点的证据:通常归因于骨细胞的主要功能,如机械传感、成骨细胞/破骨细胞活性调节和矿物质代谢,也发生在没有这些细胞的鱼类骨骼中,因此必须通过替代的、也许是古老的途径来实现。为了能够与哺乳动物骨骼进行有意义的比较,我们建议对调节途径进行全面的系统发育研究、对结构和力学性能进行研究以及对鱼类中骨细胞的存在与否进行调查。对鱼骨的微观/纳米级结构和构造、其力学性能以及其在健康和疾病中的生理学的深入了解将有助于鱼类骨骼生物学学科,但也可能有助于回答基本骨生物学的问题。

相似文献

1
The enigmas of bone without osteocytes.
Bonekey Rep. 2013 May 1;2:343. doi: 10.1038/bonekey.2013.77.
2
The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism.
Biol Rev Camb Philos Soc. 2019 Aug;94(4):1338-1363. doi: 10.1111/brv.12505. Epub 2019 Mar 28.
3
Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited.
Bone. 2009 Jan;44(1):11-6. doi: 10.1016/j.bone.2008.09.017. Epub 2008 Oct 14.
4
Remodeling in bone without osteocytes: billfish challenge bone structure-function paradigms.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16047-52. doi: 10.1073/pnas.1412372111. Epub 2014 Oct 20.
7
Physiological and pathological osteocytic osteolysis.
J Musculoskelet Neuronal Interact. 2018 Sep 1;18(3):292-303.
9
Osteocytes, strain detection, bone modeling and remodeling.
Calcif Tissue Int. 1993;53 Suppl 1:S102-6; discussion S106-7. doi: 10.1007/BF01673415.
10
Osteocytes remove and replace perilacunar mineral during reproductive cycles.
Bone. 2013 Jun;54(2):230-6. doi: 10.1016/j.bone.2013.01.025. Epub 2013 Jan 23.

引用本文的文献

1
A novel optimized silver nitrate staining method for visualizing the osteocyte lacuno-canalicular system.
Front Endocrinol (Lausanne). 2025 May 15;16:1561576. doi: 10.3389/fendo.2025.1561576. eCollection 2025.
2
Nanocrystal Compressive Residual Stresses: A Strategy to Strengthen the Bony Spines of Osteocytic and Anosteocytic Fish.
Adv Sci (Weinh). 2025 May;12(20):e2410617. doi: 10.1002/advs.202410617. Epub 2025 Apr 11.
3
Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia.
Bioengineering (Basel). 2024 May 20;11(5):514. doi: 10.3390/bioengineering11050514.
4
Osteocyte-mediated mechanical response controls osteoblast differentiation and function.
Front Physiol. 2024 Mar 11;15:1364694. doi: 10.3389/fphys.2024.1364694. eCollection 2024.
5
A Collagen10a1 mutation disrupts cell polarity in a medaka model for metaphyseal chondrodysplasia type Schmid.
iScience. 2024 Mar 4;27(4):109405. doi: 10.1016/j.isci.2024.109405. eCollection 2024 Apr 19.
6
Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone.
Endocr Rev. 2024 Jul 12;45(4):493-520. doi: 10.1210/endrev/bnae004.
7
Skeletal Morphogenesis and Anomalies in Gilthead Seabream: A Comprehensive Review.
Int J Mol Sci. 2023 Nov 7;24(22):16030. doi: 10.3390/ijms242216030.
8
The osteocyte and its osteoclastogenic potential.
Front Endocrinol (Lausanne). 2023 May 24;14:1121727. doi: 10.3389/fendo.2023.1121727. eCollection 2023.
9
Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone.
Front Endocrinol (Lausanne). 2023 Jan 23;14:1101356. doi: 10.3389/fendo.2023.1101356. eCollection 2023.

本文引用的文献

3
Osteocytic osteolysis: time for a second look?
Bonekey Rep. 2012 Dec 5;1:229. doi: 10.1038/bonekey.2012.229.
4
The roles of osteocyte signaling in bone.
J Am Acad Orthop Surg. 2012 Oct;20(10):670-1. doi: 10.5435/JAAOS-20-10-670.
5
The osteoclast, bone remodelling and treatment of metabolic bone disease.
Eur J Clin Invest. 2012 Dec;42(12):1332-41. doi: 10.1111/j.1365-2362.2012.02717.x. Epub 2012 Sep 23.
6
How linear tension converts to curvature: geometric control of bone tissue growth.
PLoS One. 2012;7(5):e36336. doi: 10.1371/journal.pone.0036336. Epub 2012 May 11.
8
Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio).
PLoS One. 2012;7(4):e34072. doi: 10.1371/journal.pone.0034072. Epub 2012 Apr 18.
9
The impact of substrate stiffness and mechanical loading on fibroblast-induced scaffold remodeling.
Tissue Eng Part A. 2012 Sep;18(17-18):1804-17. doi: 10.1089/ten.TEA.2011.0514. Epub 2012 Jun 25.
10
Osteocyte RANKL: new insights into the control of bone remodeling.
J Bone Miner Res. 2012 Mar;27(3):499-505. doi: 10.1002/jbmr.1547.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验