Suppr超能文献

石墨烯边缘单个铁原子催化过程及反常扩散的直接原位观察。

Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges.

作者信息

Zhao Jiong, Deng Qingming, Avdoshenko Stanislav M, Fu Lei, Eckert Jürgen, Rümmeli Mark H

机构信息

Institute of Complex Materials and Center for Integrated Nanostructure Physics, Institute for Basic Science and Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea;

Institute of Solid State Research, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, D-01171 Dresden, Germany;

出版信息

Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15641-6. doi: 10.1073/pnas.1412962111. Epub 2014 Oct 20.

Abstract

Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp(2) carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations.

摘要

单原子催化剂因其高效率而备受关注。在化学沉积的sp(2)碳的情况下,引入单个过渡金属原子进行生长可以为石墨烯和碳纳米管的形成机制提供关键见解。如果我们要克服这些材料的制造困难并充分利用它们独特的能带结构和物理性质,这一知识尤为重要。在这项工作中,我们展示了对石墨烯边缘单个铁原子的原子分辨透射电子显微镜原位研究。我们的原位观察表明,单个铁原子沿着边缘扩散,去除或添加碳原子(即催化作用)。单个铁原子催化行为的实验观察结果与支持性的理论研究非常吻合。此外,石墨烯边缘铁原子的动力学表现出反常扩散,这同样与我们的理论研究一致。

相似文献

1
Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15641-6. doi: 10.1073/pnas.1412962111. Epub 2014 Oct 20.
2
Magnetism of substitutional Fe impurities in graphene nanoribbons.
J Chem Phys. 2011 Jan 14;134(2):024704. doi: 10.1063/1.3520149.
4
Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
ACS Nano. 2010 Jun 22;4(6):3422-8. doi: 10.1021/nn100356q.
5
Dynamics of single Fe atoms in graphene vacancies.
Nano Lett. 2013 Apr 10;13(4):1468-75. doi: 10.1021/nl304495v. Epub 2013 Mar 21.
6
Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin.
J Am Chem Soc. 2005 Jul 13;127(27):9839-43. doi: 10.1021/ja0509681.
7
Atomically precise bottom-up fabrication of graphene nanoribbons.
Nature. 2010 Jul 22;466(7305):470-3. doi: 10.1038/nature09211.
8
In Situ Transmission Electron Microscopy Modulation of Transport in Graphene Nanoribbons.
ACS Nano. 2016 Apr 26;10(4):4004-10. doi: 10.1021/acsnano.6b01419. Epub 2016 Apr 18.
9
Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene.
Nano Lett. 2014 Feb 12;14(2):450-5. doi: 10.1021/nl403327u. Epub 2014 Feb 3.
10
Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.
J Am Chem Soc. 2011 Sep 28;133(38):14880-3. doi: 10.1021/ja205832z. Epub 2011 Aug 31.

引用本文的文献

2
Linear indium atom chains at graphene edges.
NPJ 2D Mater Appl. 2023;7(1):2. doi: 10.1038/s41699-023-00364-6. Epub 2023 Jan 25.
3
Platinum single-atom adsorption on graphene: a density functional theory study.
Nanoscale Adv. 2019 Jan 8;1(3):1165-1174. doi: 10.1039/c8na00236c. eCollection 2019 Mar 12.
4
Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution.
Adv Sci (Weinh). 2022 Jul;9(20):e2200592. doi: 10.1002/advs.202200592. Epub 2022 May 4.
5
Single-Atom Catalysts: A Perspective toward Application in Electrochemical Energy Conversion.
JACS Au. 2021 Jun 21;1(8):1086-1100. doi: 10.1021/jacsau.1c00121. eCollection 2021 Aug 23.
7
Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis.
Nat Commun. 2020 Apr 21;11(1):1919. doi: 10.1038/s41467-020-15806-8.
8
Atomic-Scale Structural Modification of 2D Materials.
Adv Sci (Weinh). 2019 Jan 22;6(5):1801501. doi: 10.1002/advs.201801501. eCollection 2019 Mar 6.
10
Fe-catalyzed etching of exfoliated graphite through carbon hydrogenation.
Carbon N Y. 2016 Jan;96:311-315. doi: 10.1016/j.carbon.2015.09.079. Epub 2015 Sep 25.

本文引用的文献

1
Free-standing single-atom-thick iron membranes suspended in graphene pores.
Science. 2014 Mar 14;343(6176):1228-32. doi: 10.1126/science.1245273.
2
Hydrogen-free graphene edges.
Nat Commun. 2014;5:3040. doi: 10.1038/ncomms4040.
3
Sensitivity of graphene edge states to surface adatom interactions.
Nano Lett. 2013 Oct 9;13(10):4820-6. doi: 10.1021/nl402514c. Epub 2013 Sep 6.
4
Dynamics of single Fe atoms in graphene vacancies.
Nano Lett. 2013 Apr 10;13(4):1468-75. doi: 10.1021/nl304495v. Epub 2013 Mar 21.
5
Unraveling the atomic structure of ultrafine iron clusters.
Sci Rep. 2012;2:995. doi: 10.1038/srep00995. Epub 2012 Dec 18.
6
Retro-fitting an older (S)TEM with two Cs aberration correctors for 80 kV and 60 kV operation.
J Microsc. 2013 Feb;249(2):87-92. doi: 10.1111/j.1365-2818.2012.03684.x. Epub 2012 Nov 23.
7
Efficient defect healing in catalytic carbon nanotube growth.
Phys Rev Lett. 2012 Jun 15;108(24):245505. doi: 10.1103/PhysRevLett.108.245505.
8
Dislocation-driven deformations in graphene.
Science. 2012 Jul 13;337(6091):209-12. doi: 10.1126/science.1217529.
10
Transition metal surface passivation induced graphene edge reconstruction.
J Am Chem Soc. 2012 Apr 11;134(14):6204-9. doi: 10.1021/ja2104119. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验