Yang Ivana V, Pedersen Brent S, Rabinovich Einat, Hennessy Corinne E, Davidson Elizabeth J, Murphy Elissa, Guardela Brenda Juan, Tedrow John R, Zhang Yingze, Singh Mandal K, Correll Mick, Schwarz Marvin I, Geraci Mark, Sciurba Frank C, Quackenbush John, Spira Avrum, Kaminski Naftali, Schwartz David A
1 Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
Am J Respir Crit Care Med. 2014 Dec 1;190(11):1263-72. doi: 10.1164/rccm.201408-1452OC.
Idiopathic pulmonary fibrosis (IPF) is an untreatable and often fatal lung disease that is increasing in prevalence and is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control gene expression and are likely to regulate the IPF transcriptome.
To identify methylation marks that modify gene expression in IPF lung.
We assessed DNA methylation (comprehensive high-throughput arrays for relative methylation arrays [CHARM]) and gene expression (Agilent gene expression arrays) in 94 patients with IPF and 67 control subjects, and performed integrative genomic analyses to define methylation-gene expression relationships in IPF lung. We validated methylation changes by a targeted analysis (Epityper), and performed functional validation of one of the genes identified by our analysis.
We identified 2,130 differentially methylated regions (DMRs; <5% false discovery rate), of which 738 are associated with significant changes in gene expression and enriched for expected inverse relationship between methylation and expression (P < 2.2 × 10(-16)). We validated 13/15 DMRs by targeted analysis of methylation. Methylation-expression quantitative trait loci (methyl-eQTL) identified methylation marks that control cis and trans gene expression, with an enrichment for cis relationships (P < 2.2 × 10(-16)). We found five trans methyl-eQTLs where a methylation change at a single DMR is associated with transcriptional changes in a substantial number of genes; four of these DMRs are near transcription factors (castor zinc finger 1 [CASZ1], FOXC1, MXD4, and ZDHHC4). We studied the in vitro effects of change in CASZ1 expression and validated its role in regulation of target genes in the methyl-eQTL.
These results suggest that DNA methylation may be involved in the pathogenesis of IPF.
特发性肺纤维化(IPF)是一种无法治愈且往往致命的肺部疾病,其患病率正在上升,由遗传和环境因素之间的复杂相互作用引起。表观遗传机制控制基因表达,可能调节IPF转录组。
识别在IPF肺中修饰基因表达的甲基化标记。
我们评估了94例IPF患者和67例对照受试者的DNA甲基化(相对甲基化阵列综合高通量阵列[CHARM])和基因表达(安捷伦基因表达阵列),并进行整合基因组分析以确定IPF肺中的甲基化-基因表达关系。我们通过靶向分析(Epityper)验证甲基化变化,并对我们分析鉴定出的一个基因进行功能验证。
我们识别出2130个差异甲基化区域(DMR;错误发现率<5%),其中738个与基因表达的显著变化相关,且富集了甲基化与表达之间预期的负相关关系(P < 2.2×10⁻¹⁶)。我们通过甲基化靶向分析验证了13/15个DMR。甲基化-表达定量性状位点(methyl-eQTL)识别出控制顺式和反式基因表达的甲基化标记,顺式关系富集(P < 2.2×10⁻¹⁶)。我们发现五个反式methyl-eQTL,其中单个DMR处的甲基化变化与大量基因中的转录变化相关;这些DMR中有四个靠近转录因子(蓖麻锌指蛋白1[CASZ1]、FOXC1、MXD4和ZDHHC4)。我们研究了CASZ1表达变化的体外效应,并验证了其在甲基化-eQTL中对靶基因的调控作用。
这些结果表明DNA甲基化可能参与IPF的发病机制。