Zhang Ao, Wang Chi, Wang Shiji, Li Liang, Liu Zhongmin, Tian Suyan
Intensive Care Unit (ICU), First Hospital of Jilin University, Changchun, Jilin, China.
Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America.
PLoS One. 2014 Oct 15;9(10):e110052. doi: 10.1371/journal.pone.0110052. eCollection 2014.
The widespread application of microarray experiments to cancer research is astounding including lung cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC), there are two major histological types of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC).
In this paper, we proposed to integrate a visualization method called Radial Coordinate Visualization (Radviz) with a suitable classifier, aiming at discriminating two NSCLC subtypes using patients' gene expression profiles. Our analyses on simulated data and a real microarray dataset show that combining with a classification method, Radviz may play a role in selecting relevant features and ameliorating parsimony, while the final model suffers no or least loss of accuracy. Most importantly, a graphic representation is more easily understandable and implementable for a clinician than statistical methods and/or mathematic equations.
To conclude, using the NSCLC microarray data presented here as a benchmark, the comprehensive understanding of the underlying mechanism associated with NSCLC and of the mechanisms with its subtypes and respective stages will become reality in the near future.
微阵列实验在癌症研究中的广泛应用令人震惊,其中包括肺癌,这是人类最常见的致命肿瘤之一。在非小细胞肺癌(NSCLC)中,有两种主要的组织学类型,即腺癌(AC)和鳞状细胞癌(SCC)。
在本文中,我们提议将一种称为径向坐标可视化(Radviz)的可视化方法与合适的分类器相结合,旨在利用患者的基因表达谱来区分两种NSCLC亚型。我们对模拟数据和真实微阵列数据集的分析表明,与分类方法相结合,Radviz在选择相关特征和改善简约性方面可能发挥作用,而最终模型的准确性不会受到损失或损失最小。最重要的是,对于临床医生来说,图形表示比统计方法和/或数学方程更容易理解和实施。
总之,以本文中呈现的NSCLC微阵列数据为基准,在不久的将来,对与NSCLC相关的潜在机制及其亚型和各自阶段的机制的全面理解将成为现实。