Suppr超能文献

可视化辅助分类集成通过基因表达谱区分肺腺癌和鳞状细胞癌样本。

Visualization-aided classification ensembles discriminate lung adenocarcinoma and squamous cell carcinoma samples using their gene expression profiles.

作者信息

Zhang Ao, Wang Chi, Wang Shiji, Li Liang, Liu Zhongmin, Tian Suyan

机构信息

Intensive Care Unit (ICU), First Hospital of Jilin University, Changchun, Jilin, China.

Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America.

出版信息

PLoS One. 2014 Oct 15;9(10):e110052. doi: 10.1371/journal.pone.0110052. eCollection 2014.

Abstract

INTRODUCTION

The widespread application of microarray experiments to cancer research is astounding including lung cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC), there are two major histological types of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC).

RESULTS

In this paper, we proposed to integrate a visualization method called Radial Coordinate Visualization (Radviz) with a suitable classifier, aiming at discriminating two NSCLC subtypes using patients' gene expression profiles. Our analyses on simulated data and a real microarray dataset show that combining with a classification method, Radviz may play a role in selecting relevant features and ameliorating parsimony, while the final model suffers no or least loss of accuracy. Most importantly, a graphic representation is more easily understandable and implementable for a clinician than statistical methods and/or mathematic equations.

CONCLUSION

To conclude, using the NSCLC microarray data presented here as a benchmark, the comprehensive understanding of the underlying mechanism associated with NSCLC and of the mechanisms with its subtypes and respective stages will become reality in the near future.

摘要

引言

微阵列实验在癌症研究中的广泛应用令人震惊,其中包括肺癌,这是人类最常见的致命肿瘤之一。在非小细胞肺癌(NSCLC)中,有两种主要的组织学类型,即腺癌(AC)和鳞状细胞癌(SCC)。

结果

在本文中,我们提议将一种称为径向坐标可视化(Radviz)的可视化方法与合适的分类器相结合,旨在利用患者的基因表达谱来区分两种NSCLC亚型。我们对模拟数据和真实微阵列数据集的分析表明,与分类方法相结合,Radviz在选择相关特征和改善简约性方面可能发挥作用,而最终模型的准确性不会受到损失或损失最小。最重要的是,对于临床医生来说,图形表示比统计方法和/或数学方程更容易理解和实施。

结论

总之,以本文中呈现的NSCLC微阵列数据为基准,在不久的将来,对与NSCLC相关的潜在机制及其亚型和各自阶段的机制的全面理解将成为现实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/4198193/11afb9dee0e4/pone.0110052.g001.jpg

相似文献

2
miRNAs expression profiling to distinguish lung squamous-cell carcinoma from adenocarcinoma subtypes.
J Cancer Res Clin Oncol. 2012 Oct;138(10):1641-50. doi: 10.1007/s00432-012-1240-0. Epub 2012 May 22.
3
Identification of microRNAs differentially expressed between lung squamous cell carcinoma and lung adenocarcinoma.
Mol Med Rep. 2013 Aug;8(2):456-62. doi: 10.3892/mmr.2013.1517. Epub 2013 Jun 11.
4
Differential Expression Pattern of THBS1 and THBS2 in Lung Cancer: Clinical Outcome and a Systematic-Analysis of Microarray Databases.
PLoS One. 2016 Aug 11;11(8):e0161007. doi: 10.1371/journal.pone.0161007. eCollection 2016.
5
Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms.
Biochim Biophys Acta Mol Basis Dis. 2020 Aug 1;1866(8):165822. doi: 10.1016/j.bbadis.2020.165822. Epub 2020 Apr 28.
6
Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma.
J Clin Oncol. 2009 Apr 20;27(12):2030-7. doi: 10.1200/JCO.2008.19.4134. Epub 2009 Mar 9.
7
FAM83B is a novel biomarker for diagnosis and prognosis of lung squamous cell carcinoma.
Int J Oncol. 2015 Mar;46(3):999-1006. doi: 10.3892/ijo.2015.2817. Epub 2015 Jan 7.
8
The molecular approach to diagnosis in lung cancer.
Br J Hosp Med (Lond). 2015 May;76(5):C74-6. doi: 10.12968/hmed.2015.76.5.C74.
10
MicroRNA profiling in lung cancer reveals new molecular markers for diagnosis.
Acta Cytol. 2012;56(6):645-54. doi: 10.1159/000343473. Epub 2012 Nov 24.

引用本文的文献

1
Weighted gene expression profiles identify diagnostic and prognostic genes for lung adenocarcinoma and squamous cell carcinoma.
J Int Med Res. 2020 Mar;48(3):300060519893837. doi: 10.1177/0300060519893837. Epub 2019 Dec 19.
4
Measurement of quality of life in second-line patients with advanced NSCLC without targetable mutations: a review.
Lung Cancer Manag. 2016 Jun;5(2):105-116. doi: 10.2217/lmt-2016-0010. Epub 2016 Jul 8.
5
6
Classification and survival prediction for early-stage lung adenocarcinoma and squamous cell carcinoma patients.
Oncol Lett. 2017 Nov;14(5):5464-5470. doi: 10.3892/ol.2017.6835. Epub 2017 Aug 28.
8
Classification of Non-Small Cell Lung Cancer Using Significance Analysis of Microarray-Gene Set Reduction Algorithm.
Biomed Res Int. 2016;2016:2491671. doi: 10.1155/2016/2491671. Epub 2016 Jun 30.

本文引用的文献

2
Multi-TGDR: a regularization method for multi-class classification in microarray experiments.
PLoS One. 2013 Nov 19;8(11):e78302. doi: 10.1371/journal.pone.0078302. eCollection 2013.
3
Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge.
Bioinformatics. 2013 Nov 15;29(22):2892-9. doi: 10.1093/bioinformatics/btt492. Epub 2013 Aug 20.
4
Diagnostic and prognostic impact of desmocollins in human lung cancer.
J Clin Pathol. 2012 Dec;65(12):1100-6. doi: 10.1136/jclinpath-2011-200630. Epub 2012 Sep 21.
5
Industrial methodology for process verification in research (IMPROVER): toward systems biology verification.
Bioinformatics. 2012 May 1;28(9):1193-201. doi: 10.1093/bioinformatics/bts116. Epub 2012 Mar 14.
6
Verification of systems biology research in the age of collaborative competition.
Nat Biotechnol. 2011 Sep 8;29(9):811-5. doi: 10.1038/nbt.1968.
7
Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths.
CA Cancer J Clin. 2011 Jul-Aug;61(4):212-36. doi: 10.3322/caac.20121. Epub 2011 Jun 17.
9
Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer.
Int J Cancer. 2011 Jul 15;129(2):355-64. doi: 10.1002/ijc.25704. Epub 2010 Nov 28.
10
Frozen robust multiarray analysis (fRMA).
Biostatistics. 2010 Apr;11(2):242-53. doi: 10.1093/biostatistics/kxp059. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验