Suppr超能文献

去除表达微阵列数据分析中的批次效应:六种批次调整方法的评估。

Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.

机构信息

National Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, People's Republic of China.

出版信息

PLoS One. 2011 Feb 28;6(2):e17238. doi: 10.1371/journal.pone.0017238.

Abstract

The expression microarray is a frequently used approach to study gene expression on a genome-wide scale. However, the data produced by the thousands of microarray studies published annually are confounded by "batch effects," the systematic error introduced when samples are processed in multiple batches. Although batch effects can be reduced by careful experimental design, they cannot be eliminated unless the whole study is done in a single batch. A number of programs are now available to adjust microarray data for batch effects prior to analysis. We systematically evaluated six of these programs using multiple measures of precision, accuracy and overall performance. ComBat, an Empirical Bayes method, outperformed the other five programs by most metrics. We also showed that it is essential to standardize expression data at the probe level when testing for correlation of expression profiles, due to a sizeable probe effect in microarray data that can inflate the correlation among replicates and unrelated samples.

摘要

微阵列是一种常用于研究全基因组基因表达的方法。然而,每年发表的数千项微阵列研究产生的数据受到“批次效应”的干扰,即当样本在多个批次中处理时引入的系统误差。虽然可以通过仔细的实验设计来减少批次效应,但除非整个研究在单个批次中进行,否则无法消除批次效应。现在有许多程序可用于在分析之前调整微阵列数据以适应批次效应。我们使用多种精度、准确性和整体性能的度量标准系统地评估了这六个程序。ComBat(经验贝叶斯方法)在大多数指标上都优于其他五个程序。我们还表明,由于微阵列数据中存在相当大的探针效应,这会夸大重复和不相关样本之间的表达谱相关性,因此在测试表达谱相关性时,必须在探针水平上标准化表达数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d2/3046121/e0c4dfd41660/pone.0017238.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验