Suppr超能文献

UGMDR:用于检测复杂性状潜在多因素相互作用的统一概念框架。

UGMDR: a unified conceptual framework for detection of multifactor interactions underlying complex traits.

作者信息

Lou X-Y

机构信息

Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Heredity (Edinb). 2015 Mar;114(3):255-61. doi: 10.1038/hdy.2014.94. Epub 2014 Oct 22.

Abstract

Biological outcomes are governed by multiple genetic and environmental factors that act in concert. Determining multifactor interactions is the primary topic of interest in recent genetics studies but presents enormous statistical and mathematical challenges. The computationally efficient multifactor dimensionality reduction (MDR) approach has emerged as a promising tool for meeting these challenges. On the other hand, complex traits are expressed in various forms and have different data generation mechanisms that cannot be appropriately modeled by a dichotomous model; the subjects in a study may be recruited according to its own analytical goals, research strategies and resources available, not only consisting of homogeneous unrelated individuals. Although several modifications and extensions of MDR have in part addressed the practical problems, they are still limited in statistical analyses of diverse phenotypes, multivariate phenotypes and correlated observations, correcting for potential population stratification and unifying both unrelated and family samples into a more powerful analysis. I propose a comprehensive statistical framework, referred as to unified generalized MDR (UGMDR), for systematic extension of MDR. The proposed approach is quite versatile, not only allowing for covariate adjustment, being suitable for analyzing almost any trait type, for example, binary, count, continuous, polytomous, ordinal, time-to-onset, multivariate and others, as well as combinations of those, but also being applicable to various study designs, including homogeneous and admixed unrelated-subject and family as well as mixtures of them. The proposed UGMDR offers an important addition to the arsenal of analytical tools for identifying nonlinear multifactor interactions and unraveling the genetic architecture of complex traits.

摘要

生物学结果由多种协同作用的遗传和环境因素决定。确定多因素相互作用是近期遗传学研究的主要关注主题,但面临巨大的统计和数学挑战。计算效率高的多因素降维(MDR)方法已成为应对这些挑战的一种有前途的工具。另一方面,复杂性状以多种形式表现,具有不同的数据生成机制,无法用二分模型进行适当建模;研究中的受试者可能根据其自身的分析目标、研究策略和可用资源进行招募,不仅包括同质的无关个体。尽管MDR的一些修改和扩展在一定程度上解决了实际问题,但它们在对多样的表型、多变量表型和相关观察进行统计分析、校正潜在的群体分层以及将无关样本和家系样本统一到更强大的分析中仍存在局限性。我提出了一个全面的统计框架,称为统一广义MDR(UGMDR),用于MDR的系统扩展。所提出的方法非常通用,不仅允许进行协变量调整,适用于分析几乎任何性状类型,例如二元、计数、连续、多分类、有序、发病时间、多变量等,以及它们的组合,而且还适用于各种研究设计,包括同质和混合的无关个体、家系以及它们的混合。所提出的UGMDR为识别非线性多因素相互作用和揭示复杂性状的遗传结构的分析工具库增添了重要内容。

相似文献

1
UGMDR: a unified conceptual framework for detection of multifactor interactions underlying complex traits.
Heredity (Edinb). 2015 Mar;114(3):255-61. doi: 10.1038/hdy.2014.94. Epub 2014 Oct 22.
5
Identification of multiple gene-gene interactions for ordinal phenotypes.
BMC Med Genomics. 2013;6 Suppl 2(Suppl 2):S9. doi: 10.1186/1755-8794-6-S2-S9. Epub 2013 May 7.
7
A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions.
Bioinformatics. 2016 Sep 1;32(17):i605-i610. doi: 10.1093/bioinformatics/btw424.
9
Multivariate Quantitative Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions.
Hum Hered. 2015;79(3-4):168-81. doi: 10.1159/000377723. Epub 2015 Jul 28.
10
Gene-gene interaction analysis for the survival phenotype based on the Cox model.
Bioinformatics. 2012 Sep 15;28(18):i582-i588. doi: 10.1093/bioinformatics/bts415.

引用本文的文献

2
SNPs and Gene-Gene and Gene-Environment Interactions on Essential Hypertension.
Front Cardiovasc Med. 2021 Oct 14;8:720884. doi: 10.3389/fcvm.2021.720884. eCollection 2021.
3
- Single-Nucleotide Polymorphisms and Gene-Gene/Environment Interactions on the Risk of Hyperlipidemia.
Front Genet. 2021 Jul 21;12:679027. doi: 10.3389/fgene.2021.679027. eCollection 2021.
4
The MC4R SNPs, their haplotypes and gene-environment interactions on the risk of obesity.
Mol Med. 2020 Aug 8;26(1):77. doi: 10.1186/s10020-020-00202-1.
6
SYNE1-QK1 SNPs, G × G and G × E interactions on the risk of hyperlipidaemia.
J Cell Mol Med. 2020 May;24(10):5772-5785. doi: 10.1111/jcmm.15239. Epub 2020 Apr 13.
8
BCL3-PVRL2-TOMM40 SNPs, gene-gene and gene-environment interactions on dyslipidemia.
Sci Rep. 2018 Apr 18;8(1):6189. doi: 10.1038/s41598-018-24432-w.
9
GMDR: Versatile Software for Detecting Gene-Gene and Gene-Environ- ment Interactions Underlying Complex Traits.
Curr Genomics. 2016 Oct;17(5):396-402. doi: 10.2174/1389202917666160513102612.
10
Gene-Gene and Gene-Environment Interactions Underlying Complex Traits and their Detection.
Biom Biostat Int J. 2014;1(2). doi: 10.15406/bbij.2014.01.00007.

本文引用的文献

2
Gene-gene interaction analysis for the survival phenotype based on the Cox model.
Bioinformatics. 2012 Sep 15;28(18):i582-i588. doi: 10.1093/bioinformatics/bts415.
3
Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success.
Am J Psychiatry. 2012 Jul;169(7):735-42. doi: 10.1176/appi.ajp.2012.11101545.
4
A novel method to detect gene-gene interactions in structured populations: MDR-SP.
Ann Hum Genet. 2011 Nov;75(6):742-54. doi: 10.1111/j.1469-1809.2011.00681.x.
8
Finding the missing heritability of complex diseases.
Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.
9
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验