Suppr超能文献

通过层层叠氮化钛/碳氮化钛结构的活性界面增强氧还原的电催化性能。

Enhanced electrocatalytic performance for oxygen reduction via active interfaces of layer-by-layered titanium nitride/titanium carbonitride structures.

作者信息

Jin Zhaoyu, Li Panpan, Xiao Dan

机构信息

Key Laboratory of Green Chemistry and Technology, Ministry of education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

1] Key Laboratory of Green Chemistry and Technology, Ministry of education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China [2] College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China.

出版信息

Sci Rep. 2014 Oct 22;4:6712. doi: 10.1038/srep06712.

Abstract

Cathode materials always limit the performance of fuel cells while the commercial platinum-based catalysts hardly meet the requirements of low cost, durable and stable. Here a non-precious metal oxygen reduction reaction (ORR) electocatalyst based on titanium nitride/titanium carbonitride hierarchical structures (TNTCNHS) is demonstrated as high activity as Pt/C. In alkaline condition, tuning interface/mass ratio of TiN/TiCN, we observed the onset potential of ~0.93 V vs. RHE and a limit diffusion current density of ~5.1 mA cm(-2) (at a rotating speed of 1600 rpm) on TNTCNHS with a relative low catalyst loading of ~0.1 mg cm(-2). The kinetic current, durability and tolerance to crossover effect studies reveal even more efficient than carbon-supported platinum. The architecture fabrication for such electrocatalyst is easy to realize in industrial-scale facilities, for the use of chemical vapor deposition (CVD) technique could support a huge area production (more than 10000 cm(2) for one pot) to satisfy the enormous market requirements in the future.

摘要

阴极材料一直限制着燃料电池的性能,而商业化的铂基催化剂很难满足低成本、耐用和稳定的要求。在此,一种基于氮化钛/碳氮化钛分级结构(TNTCNHS)的非贵金属氧还原反应(ORR)电催化剂被证明具有与Pt/C一样高的活性。在碱性条件下,通过调整TiN/TiCN的界面/质量比,我们在TNTCNHS上观察到相对于可逆氢电极(RHE)约0.93 V的起始电位和约5.1 mA cm(-2)的极限扩散电流密度(在1600 rpm的转速下),且催化剂负载相对较低,约为0.1 mg cm(-2)。动力学电流、耐久性和对交叉效应的耐受性研究表明,该催化剂甚至比碳载铂更高效。这种电催化剂的结构制造在工业规模的设施中很容易实现,因为化学气相沉积(CVD)技术的使用能够支持大面积生产(一锅法可生产超过10000 cm(2)),以满足未来巨大的市场需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ce5/4205842/8309b22c902a/srep06712-f1.jpg

相似文献

3
Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction.
ChemSusChem. 2013 Oct;6(10):2016-21. doi: 10.1002/cssc.201300331. Epub 2013 Aug 22.
5
Mesoporous TiN as a noncarbon support of Ag-rich PtAg nanoalloy catalysts for oxygen reduction reaction in alkaline media.
ChemSusChem. 2014 Dec;7(12):3356-61. doi: 10.1002/cssc.201402726. Epub 2014 Oct 15.
9
Facile one step synthesis of Cu-g-CN electrocatalyst realized oxygen reduction reaction with excellent methanol crossover impact and durability.
J Colloid Interface Sci. 2020 Jan 15;558:182-189. doi: 10.1016/j.jcis.2019.09.107. Epub 2019 Sep 27.

引用本文的文献

1
Nanostructured Niobium and Titanium Carbonitrides as Electrocatalyst Supports.
ACS Appl Nano Mater. 2024 Apr 24;7(9):10120-10129. doi: 10.1021/acsanm.4c00503. eCollection 2024 May 10.
2
Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells.
Sci Adv. 2022 Feb 4;8(5):eabj1584. doi: 10.1126/sciadv.abj1584. Epub 2022 Feb 2.
3
Anchoring MnCoO Nanorods from Bimetal-Organic Framework on rGO for High-Performance Oxygen Evolution and Reduction Reaction.
ACS Omega. 2019 Dec 18;4(27):22325-22331. doi: 10.1021/acsomega.9b02362. eCollection 2019 Dec 31.
4
TiCrN-TiAlN-TiAlSiN-TiAlSiCN multi-layers utilized to increase tillage tools useful lifetime.
Sci Rep. 2019 Dec 13;9(1):19101. doi: 10.1038/s41598-019-55677-8.

本文引用的文献

4
A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity.
Adv Mater. 2013 Jun 18;25(23):3192-6. doi: 10.1002/adma.201300515. Epub 2013 May 8.
6
Enhancing electrocatalytic oxygen reduction on MnO(2) with vacancies.
Angew Chem Int Ed Engl. 2013 Feb 25;52(9):2474-7. doi: 10.1002/anie.201208582. Epub 2013 Jan 25.
7
Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen.
Angew Chem Int Ed Engl. 2012 Nov 19;51(47):11770-3. doi: 10.1002/anie.201206152. Epub 2012 Oct 16.
8
Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes.
J Am Chem Soc. 2012 Sep 26;134(38):15849-57. doi: 10.1021/ja305623m. Epub 2012 Sep 17.
10
Electrocatalyst approaches and challenges for automotive fuel cells.
Nature. 2012 Jun 6;486(7401):43-51. doi: 10.1038/nature11115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验