McLeod Lucy K, Spikes Geoffrey H, Zalitis Christopher M, Rigg Katie M, Walker Marc, Playford Helen Y, Sharman Jonathan D B, Walton Richard I
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.
ACS Appl Nano Mater. 2024 Apr 24;7(9):10120-10129. doi: 10.1021/acsanm.4c00503. eCollection 2024 May 10.
Nanostructured niobium-titanium carbonitrides, (Nb,Ti)CN, with the cubic-rock salt structure are prepared without the use of reactive gases via thermal treatment (700-1200 °C) under nitrogen of mixtures of guanidine carbonate and ammonium niobate (V) oxalate hydrate, with addition of ammonium titanyl oxalate monohydrate as a titanium source. The bulk structure and chemical composition of the materials are characterized using powder X-ray diffraction (XRD) and powder neutron diffraction, elemental homogeneity is studied using energy dispersive spectroscopy (EDS) mapping using transmission electron microscopy (TEM), and surface chemical analysis is examined using X-ray photoelectron spectroscopy (XPS). Nanoscale crystallites of between 10 and 50 nm are observed by TEM, where EDS reveals the homogeneity of metal distribution for the mixed-metal materials. Titanium carbonitrides are found to be air sensitive, reacting with air under ambient conditions, while titanium-niobium carbonitrides are found to degrade in aqueous sulfuric acid. The niobium carbonitrides, however, show some stability toward acidic solutions. Materials are produced with composition NbCN with between 0.35 and 0.45, and more carbon-rich materials ( ≈ 0.35) are found as the synthesis temperature is increased, as proven by Rietveld refinement of crystal structure against powder neutron diffraction data. Despite phase purity seen by diffraction and negligible bulk carbon content, XPS shows a complex surface chemistry for the NbCN materials, with evidence for NbO-like oxide species in a carbon-rich environment. The NbCN prepared at 900 °C has a surface area around 50 m g, making it suitable as a catalyst support. Loading with iridium provides a material active for the oxygen evolution reaction in 0.1 M sulfuric acid, with minimal leaching of either Nb or Ir after 1000 cycles.
通过在氮气气氛下,对碳酸胍和草酸铌(V)水合物的混合物进行热处理(700 - 1200°C),并添加一水合草酸氧钛作为钛源,在不使用反应性气体的情况下制备出具有立方岩盐结构的纳米结构碳氮化铌钛(Nb,Ti)CN。使用粉末X射线衍射(XRD)和粉末中子衍射对材料的体相结构和化学成分进行表征,使用透射电子显微镜(TEM)的能量色散光谱(EDS)映射研究元素均匀性,使用X射线光电子能谱(XPS)进行表面化学分析。通过TEM观察到10至50纳米之间的纳米级微晶,其中EDS显示了混合金属材料中金属分布的均匀性。发现碳氮化钛对空气敏感,在环境条件下会与空气反应,而碳氮化钛铌在硫酸水溶液中会降解。然而,碳氮化铌对酸性溶液表现出一定的稳定性。制备出的材料组成中NbCN的含量在0.35至0.45之间,并且随着合成温度的升高发现了更多富碳材料(≈0.35),这通过对粉末中子衍射数据进行晶体结构的Rietveld精修得到证实。尽管通过衍射观察到相纯度且体相碳含量可忽略不计,但XPS显示NbCN材料具有复杂的表面化学性质,在富碳环境中有类似NbO的氧化物物种的证据。在900°C制备的NbCN的表面积约为50 m²/g,使其适合作为催化剂载体。负载铱后得到的材料在0.1 M硫酸中对析氧反应具有活性,在1000次循环后Nb或Ir的浸出量最小。