Kim Haksoo, Park Samuel B, Monroe James I, Traughber Bryan J, Zheng Yiran, Lo Simon S, Yao Min, Mansur David, Ellis Rodney, Machtay Mitchell, Sohn Jason W
Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea.
Technol Cancer Res Treat. 2015 Aug;14(4):428-39. doi: 10.1177/1533034614553891. Epub 2014 Oct 21.
This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck.
本文提出了定量分析工具和数字体模,以量化可变形图像配准(DIR)系统的固有误差,并利用具有临床真实感的数字图像体模,通过局部和全局误差分析方法,为DIR系统的临床应用建立质量保证(QA)程序。基于地标点的图像配准验证仅适用于具有显著特征点的图像。为了弥补这一不足,我们采用了一种变形向量场(DVF)比较方法,并结合新的分析技术来量化结果。数字图像体模源自实际患者图像的数据集(一个参考图像集R、一个测试图像集T)。同一患者在不同时间拍摄的图像集通过可变形方法进行配准,生成参考DVFref。将DVFref应用于原始参考图像,可将T变形为新图像R'。数据集R'、T和DVFref来自一个真实的真值集,因此可用于分析任何DIR系统,并通过比较DVFref和DVFtest来揭示固有误差。对于定量误差分析,使用了2种方法来计算和描绘DVF之间的差异,(1)一种局部误差分析工具,它在每个图像切片上用颜色映射显示变形误差大小,(2)一种全局误差分析工具,它计算变形误差直方图,该直方图描述了每个解剖结构误差的累积概率函数。从3例分别患有头颈癌、肺癌和肝癌的患者中生成了3个数字图像体模。使用头颈病例对DIR QA进行了评估。